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The quantized Hall conductance in a plateau is related to the index of a Fredholm
operator. In this paper we describe the generic “phase diagram” of Fredholm
indices associated with bounded and Toeplitz operators. We discuss the possible
relevance of our results to the phase diagram of disordered integer quantum Hall
systems. ©2001 American Institute of PhysicgDOI: 10.1063/1.1331317

The Hall conductance of integer quantum Hall systems is described mathematically by the
index of Fredholm operatoré-or precise definitions, see belgvn this paper we investigate the
phase diagram of the Fredholm index for a few classes of operators. For the algebra of bounded
operators, little can be said beyond the fact that the phase diagrams can be arbitrarily complicated.
But for the algebra of Toeplitz operators, and other related classes of operators, we establish a kind
of a Gibbs phase rufeTypical of our results is the statement that if the system is governed by two
parameters, then one should expect jumps by one at phase boundaries and jumps by up to 2 at
triple points, while jumps by more than two should never be observed.

We relate this behavior to experimental results, conjectures and open problems that arise in
the context of the quantum Hall effe@@HE).?

In Sec. | we define Fredholm operators and their indices, and explore the different sorts of
phase diagrams that can arise. In Sec. Il we recall how Fredholm indices are related to the
conductance of Quantum Hall systems. In Sec. Ill we consider phase diagrams for general
bounded operators. In Sec. IV we describe the phase diagram for linear combination of shift
operators, and in Sec. V we consider general Toeplitz operators. In Sec. VI we discuss the phase
diagrams of soluble models related to the quantum Hall effect, and how they might be modified by
disorder. We also discuss the relevance of Toeplitz operators to the quantum Hall effect and
present some open problems.

I. FREDHOLM INDICES

A. Basic notions

The following is a brief description of Fredholm operators. For more details, see Refs. 3-5.
Definition 1: A bounded operatdf on a separable Hilbert space is Fredholm if there exists a
bounded operatd8 such that -FB and 1- BF are compact. The Fredholm index is defined by

Index F)=dim Ker(F) —dim Ker(FT). )

The simplest example of a Fredholm operator with nonzero index is the unilateral shift
operator: Let,,e;,e,,... be thecanonical basis for the Hilbert spali&N), and let the operator
a act by

e,_1 Iif n>0,

a)=14 it n=o
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The reason for denoting the unilateral shift operatoaly its similarity to the harmonic oscillator
lowering operator. The adjoint & acts by

a'(e))=ens1- )

Since 1=aa'=a'a+|ey)(ey|, a is Fredholm. The kernel d is one dimensional and the kernel
of a' is zero dimensional. Thus Index(=1 and Indexa")=—1.

Although neither the dimension of KErnor that of Kef=" is stable under deformations Bf
the ingtsaxis stable. For any compact operaty for any bounded operat®, and fore sufficiently
small™

Index F) = Index F + eB+C). (4)

The following theorem is standard.
Theorem 1: If Aq,...A, are Fredholm operators, then the prodAgh,---A, is also Fred-
holm, and Index A;---A,) ==, Index(A;).
If F andF’ are Fredholm operators on the same Hilbert space, then there is a continuous path
of Fredholm operators frork to F’ if and only if Index(F)=Index(F"). (By continuous, we
mean relative to the operator nojrRut another way, the path components of Fred(the space
of Fredholm operators od, are indexed by the integers. Theéh path component is precisely the
set of Fredholm operators of index*

B. Phase diagrams

Our main concern in this paper is the following problem: Suppose one interpolates between
Fredholm operators with different indices. What can one say about the way the indices change?
Another way of phrasing this is: What is the phase diagram of Fredholm indices?

The answer to this question depends on the choice of the embedding space. In the space of
bounded operators, the “phases”—each labeled by its index—are open sets. But the boundary
between phases, as we shall explain, is rather wild: A point on the boundary of one phase is also
on the boundary oévery othemphase. This behavior is difficult to visualize.

Another class of embedding spaces that we consider is associated with Toeplitz operators with
various regularity assumptions on a class of functions. Here, at least if the functions are suffi-
ciently smooth, the boundaries between phases have a simple structure and the phase diagrams
satisfy simple rules that have the flavor of Gibbs' phase Tulgpical of our results is the
statement that under appropriate conditions, phases whose indices differ by one have a common
boundary whose codimension is one, and phases whose indices differ by two meet on a set of
codimension two, etc. Figure 1 is an example of one of the phase diagrams we obtain.

IIl. THE HALL CONDUCTANCE AS A FREDHOLM INDEX

Theories of the quantum Hall effect are roughly of two kinds: those that focus on the bulk of
the Hall and those that focus on the eddewas pointed out by Ref. 6 that the bulk-edge duality
is an illustration of thénolographic principle In either approach, the quantized Hall conductance
can be related to a Fredholm index.

A. Theories of the bulk

It is common knowledge that the Hall conductance can be identified with a Chern nimber.
For noninteracting electrons in two dimensions, this result is a special case of the fact that the Hall
conductance is a Fredholm index. Since this is not common knowledge, we recall how Chern
numbers and Fredholm indices are related.

For noninteracting electrons in two dimensions with the Fermi energy in a gap2TKN
showed that the Hall conductance for Landau Hamiltonians pétfiodic potential, is related to a
Chern numbef. The (magnetig Brillouin zone associated with the periodicity plays a role in this
theory. Because of this, the interpretation of the Hall conductance as a Chern number does not
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FIG. 1. A phase diagram for the Fredholm indexFof a2+ c,a+cq.

carry over to random or even quasiperiodic potentials nor to “irrational magnetic fields,” all of
which have na(classical Brillouin zone. Although the quantization of the Hall conductance can
be established in these cases by a limiting arguétiie interpretation as a Chern number does
not survive.

Bellissard!® in a work that had impact on noncommutative geomé&tri?, showed that the
Hall conductance witlergodic potential, be it periodic, quasiperiodic or random, and real mag-
netic field, rational or not, is a Fredholm index. This result was derived in Ref. 13 without using
noncommutative geometry.

More precisely, consider th@nfinite dimensional spectral projectiorP on the states below
the Fermi energyer for the one particle Hamiltonian in the plane. Udtbe the multiplication
operatore'?, where# is the usual polar angle in the plarié.is a singular gauge transformation
that introduces an Aharonov—Bohm flux tube at the origin of the Euclidean plane. The Hall
conductance is the Fredholm index®E P thought of as an operator on the rangePot* Since
the Fredholm index does not need a Brillouin zone, this approach offers a natural framework that
accounts for the quantization and stability of the Hall conductance.

B. Theories of the edge

Finite quantum Hall systems have chiral edge curréht8Consider the case that the bound-
ary is a circle of circumferenck. The dispersion relation of the edge states is approximately
linear in a small neighborhood of the Fermi energy and the Hamiltonian for a single edge channel,
with velocity vg, is

.UF

Now, the projectiorP is associated with the occupied edge staged"? with m=m,. Introduc-
ing a flux tube into the system is associated with the unithrye'? and send$i —UHUT. This
leads to the spectral flow of the edge stafed.P is the unilateral shift operat@ and the number
of edge states that cross the Fermi energy is Iitlg#= 1. By an argument of Halperththis is

also the Hall conductance.
An extension of this idea to Harper models with an edge is described in Ref. 17.
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lll. THE PHASE DIAGRAM FOR BOUNDED OPERATORS

We begin with the space of bounded operators with the topology defined by the operator
norm, and we wish to understand the phase diagram of a generic family of such operators. As we
shall explain, the phase diagram in the entire space is quite wild: Any point on the boundary of the
“index=k" phase is also on the boundary of every other phase.

To understand this bizarre behavior, recall that the zero opefatuch is not a Fredholm
operatoy is on the boundary of every phase: Zero is the limiteas0, of ea", with a of Eq. (2),
for anyn. The point of the theorem is that similar behavior occurs at all boundary points.

Theorem 2: Let U,, be the set of Fredholm operators of indexEvery point on the boundary
of U, is also on the boundary &f,,, for every integem.

Proof: Let A be a(not Fredholm operator on the boundary &f,,. Givene>0, we must find
an operator irlJ ,, within a distancee of A.

Suppose that the kernel and cokerneloére infinite dimensional, and that there is a gap in
the spectrum ofATA at zero.(If this is not the case, we may pertufbby an arbitrarily small
amount to make it sb.Now let B be a unitary map from the kernel &f to the cokernel. LeP
(P"), be the orthogonal projection onto k&) [coker(A)], and leta be a shift operator on
ker(A). For eachm=0, A(e) =A+ eBa™P has a bounded right inverse

AT ! P’+1(aT)mBTP’ (6)
P +AAT L7 € '

It follows that the cokernel ofA(€) is empty. It is easy to see that the kernel Afe) is m
dimensional hence Inde&(€))=m. Similarly, A+ eB(a")™P has index—m. |

IV. LINEAR COMBINATIONS OF SHIFTS

In this section and the next we show that there are interesting and simple “generic” phase
diagrams of Fredholm indices in some finite-dimensional spaces, and in some infinite-dimensional
spaces with sufficiently fine topologies. We shall also see how control is lost as the space is
enlarged and the topology is coarsened.

A. Shift by one

We begin by considering linear combinations of the shift operatand the identity operator
1. That is, we consider the operator

A=cja+tcy,

wherec; andc, are constants.

Theorem 3: If |c,|#]co|, thenA is Fredholm. The index of is 1 if |c,|>]|co| and zero if
lcil<|col. If |ci|=|col, thenA is not Fredholm.

Proof: First supposécy|>|c,|. ThenA is invertible:

“1_ -1 -1 o (-1 n
A t=co Y (1+(cy/c)a) 1= —rr—a,
n=0 CO

as the sum converges absolutely. TiHukas neither kernel nor cokernel, and has index zero.

If |ci|>|col, then the kernel ofA is one dimensional, namely all multiples ¢f/)
=3_oZ0en, Wherezy=—cy/c,. Notice how the norm ofi) goes to infinity agzy| —1. How-
ever, A" has no kernel, since for any unit vecti@), [|AT|#)||=|c;a|¢)+Co| ¢)|=|Cia’| )|
—|icol @) =|c1l—]|co|. Thus the index o is 1.

If |cq]=|co|, thenA is at the boundary between index 1 and index O, and so cannot be
Fredholm. |
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B. Finite linear combinations of shifts

Next we consider linear combinations ofja?,... up tosome fixeda". That is, we consider
operators of the form

A=cpa"+c,_ja" 1+ +cq. 7)
This is closely related to the polynomial
p(z)=cpz"+-+-+co. (8)

Theorem 4: If none of the roots op lie on the unit circle, ther is Fredholm, and the index
of A equals the number of roots pfinside the unit circle, counted with multiplicity. If any of the
roots ofp lie on the unit circle, ther is not Fredholm.

Proof: The polynomialp(z) factorizes a$(z):ckH!‘=l(z— {;), wherek is the degree op
(typically k=n, but it may happen that,=0). But thenAzckH!‘:1(a— ;). If none of the roots
Z; lie on the unit circle, then each term in the product is Fredholm, so the product is Fredholm, and
the index of the product is the sum of the indices of the factors. By Theorem 3, this exactly equals
the number of rootg; inside the unit circle.

If any of the roots lie on the unit circle, then a small perturbation can push those roots in or
out, yielding Fredholm operators with different indices. This borderline operator therefore cannot
be Fredholm. |

The last theorem easily generalizes to linear combination of left shifts and right shifts. The
index of an operator

A=c,a"+---+cjatcotc_jal+--+c_p(ahm (9)

equals the number of roots of

n

P(2)= > 7 (10)

inside the unit circle, minus the degree of the polezat0 (that ism, unlessc_,,=0). This
follows from the fact that

A=(_2_ cia”m)(aT)m. (12)

Since there is no qualitative difference between combinations of left shifts and combinations
of both left and right shifts, we restrict our attention to left shifts only, and consider families of
operators of the forn(7).

Theorem 5: In the space of complex linear combinations af,1,.,a", almost every operator
is Fredholm. For everk=n, the points where the index can jump kyby which we mean the
common boundaries of regions of Fredholm operators whose indices diffler isya set of real
codimensiork.

In the space of real linear combinations o#,1,.,a", almost every operator is Fredholm. For
every k=n, the points where the index jumps lyis a stratified space, the largest stratum of
which has real codimensidiik+ 1)/2|, where| x| denotes the integer part &f

Proof: Our parameter space is the space of coefficientsor equivalently the space of
polynomials of degreesn. This is eitherR"** or C"*1, depending on whether we allow real or
complex coefficients. In either case, the Sgtof Fredholm operators of indekis identical to the
set of polynomials withk roots inside the unit circle and the remaining-k roots outside(If
¢,=0, we say there is a root at infinity; &,=c,_,=0, there is a double root at infinity, and so
on. Counting these roots at infinity, there are always exactlgots in all) The boundary ofJ
is the set of polynomials with at moktroots inside the unit circle, at most-k outside the unit
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circle, and at least one root on the unit cird8trictly speaking, the zero polynomial is also on this
boundary. This is of such high codimension that it has no effect on the phase portrait we are
developing. We consider the common boundarydf andU,. . If k<k’, a nonvanishing poly-
nomial is on the boundary of botd, andU,, if it has at most roots inside the unit circle and

at mostn—k’ roots outside. It must therefore have at ledst k roots on the unit circle.

If we are working with complex coefficients, this is a set of codimensibn k. The roots
themselves, together with an overall scale can be used to parametrize the space of polynomi-
als. For each root, being on the unit circle is codimension 1, while being inside or outside are open
conditions. Since the roots are independent, plakingk roots on the unit circle is codimension
k' —k.

If we are working with real coefficients, the roots are not independent, as nonreal roots come
in complex conjugate pairs. Thus, the common boundaty ,0dndU,, breaks into several strata,
depending on how many real roots and how many complex conjugate pairs lie on the unit circle.
If k"—k is even, the biggest stratum consists of havikg—(k)/2 pairs, and has codimension
(k"'—Kk)/2. If kK" —k is odd, the biggest stratum consists of havikg- k—1)/2 pairs and one real
root on the unit circle, and has codimensidd  1—k)/2. |

Theorem 5 is illustrated in Fig. 1, where the phase portrait is showm#fe2 with real
coefficients, withc, fixed to equal 1. The points above the parabcja c§/4 have complex
conjugate roots, while points below have real roots. Notice that the transition from index 2 to
index O occurs at an isolated point when the roots are real, but on an interval when the roots come
in complex-conjugate pairs.

It is clear that an almost identical theorem applies to linear combinations of left shiftsallp to
and right shifts up tog")™. The results are essentially independent @indm (their only effect
being to limit the size of possible jumps e m). We can therefore extend the results to the space
of all (finite) linear combinations of left and right shifts, which is topologized as the union over all
n andm of the spaces considered above. Our result, restated for that space, is

Theorem 6: In the space of finite complex linear combinations of left and right shifts of
arbitrary degree, almost every operator is Fredholm. For every inkegér the points where the
index can jump by (by which we mean the common boundaries of regions of Fredholm opera-
tors whose indices differ bl) is a set of real codimensidn

If we restrict the coefficients to be real, then, for eviesyn, the points where the index jumps
by k is a stratified space, the largest stratum of which has real codimdr&iori)/2].

V. TOEPLITZ OPERATORS

Although Theorem 6 refers to an infinite-dimensional space, this space is still extremely
small—each point is &éinite linear combination of shifts. In this section we consid#inite linear
combinations of shifts. This is equivalent to studying Toeplitz operators.

Definition 2: The Hardy spacéd is the subspace df?(S') consisting of functions whose
Fourier transforms have no negative frequency terms. Equivalently, if weldii@'") a basis of
Fourier modes,=e"?, where the integen ranges from— to «, thenH is the closed linear
span ofeg,eq,€5,... .

We think of St as sitting in the complex plane, with=e'’. Now let f(z) be a bounded,
measurable function o', and letP be the orthogonal projection fro?(St) to H. If |y)

e H, then|fy) (pointwise produdtis in L%(S'), andP|fy) e H. We define the operatdr; by

Tl ) =Plf ). 12

Definition 3: An operator of the form(12) is called a Toeplitz operator. We call a Toeplitz
operatorT; continuous if the underlying functiofis continuous, and apply the terms “differen-
tiable,” “smooth,” and “analytic” similarly.

Remark:Toeplitz operators can be represented by semi-infinite matrices that have constant
entries on diagonals, and the various classes we have defined correspond to the decay away from
the main diagonal.
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Notice that

T €yrm If N+m=0, 13
e,= i
m™ |0 otherwise, (13

soTe _is simply a shift bym, a right shift if m>0 and a left shift fm<0. All our results about
shifts can therefore be understood in the context of Toeplitz operators. Theorem 5 refers to
operatorsT;, wheref is a polynomial inz™* of limited degree. Theorem 6 considers polynomials
or arbitrary degree iz andz™ . We will see that the results carry over to analytic functions on an
annulus aroun®&?, and to a lesser extent @ Toeplitz operators, but with results that weaken as
k is decreased.

Here are some standard results about Toeplitz operators. For details, see Ref. 4.

Theorem 7: A C! Toeplitz operatofT; is Fredholm if and only iff is everywhere nonzero on
the unit circle. In that case the index ©f is minus the winding number df around the origin,
namely

-1 df

Index T¢) = —Winding(f )= o | (14
S

Given the first half of the theorem, the equality of index and winding number is easy to
understand. We simply deforiinto a function of the fornf(z)=2z", while keepingf nonzero on
all of St throughout the deformatiofihis is always possible, see e.g., Ref).18 the process of
deformation, neither the index @f; nor the winding number of can change, as they are topo-
logical invariants. Since the winding number Bf is n, and sinceT,»=(a")" (if n=0, a "
otherwise, which has index—n, the result follows.

We now consider function on S* that can be analytically continuddithout singularities
to an annulusry<|z|<r,, where the radiir,<1 andr,>1 are fixed. This is equivalent to

requiring that the Fourier coefﬁcienfa decay exponentially fast, i.e., that the sum

o

2 [falrg+rd (15

n=—

converges. For now we do not impose any reality constraints or other symmetries on the coeffi-
cientsf,,. This space of functions is a Banach space, with norm given by the sup norm on the
annulus. This norm is stronger than any Sobolev norm on the circle itself.

The analysis of the corresponding Toeplitz operators is straightforward and similar to the
proof of Theorem 5. Sincé has no poles in the annulus, we just have to keep track of the zeroes
of f. For the index ofT; to change, a zero df must cross the unit circle. For the index to jump
fromk tok’, |k—k’| zeroes must cross simultaneously. In the absence of symmetry, the locations
of the zeroes are independent and can be freely varied, so this is a codimgnsid-event.

If we impose a reality conditionf (z) =f(z), then zeroes appear only on the real axis or in
complex conjugate pairs. In that case, changing the index by 2 is merely a codimension-1 event.
Combining these observations we obtain the following theorem.

Theorem 8: In the space of Toeplitz operators that are analytic (fix@d) annulus containing
St, almost every operator is Fredholm. For every intekgerl, the points where the index can
jump byk is a set of real codimensida

If we impose a reality conditiofi(z) = f(z) then, for everyjk=<n, the points where the index
jumps byk is a stratified space, the largest stratum of which has real codimeri&iorn )/2|.

Finally we consider Toeplitz operators that are not necessarily analytic, but are ingneds
differentiable, and we use tH@' norm. Our result is the following.
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Theorem 9: In the space of Toeplit€' operators, almost every operator is Fredholm. For
every integerk with 1<k=<2|+1, the points where the index can jump hyis a set of real
codimensiork. For every integek=2| + 1, the points where the index can jump kys a set of
real codimension 2+ 1.

In other words, our familiar results hold up to codimensidr-2, at which point we lose all
control of the change in index.

Proof: As long asf is everywhere nonzerdl; is Fredholm. To get a change in index,
therefore, we need one or more points whigrand possibly some derivatives bivith respect to
6, vanish. Suppose then that for some ane f(6,)=f'(6y)="---=f(""1(6,)=0 for somen
<I, but that thenth derivativef("(6,)+0. This is a codimensionr2-1 event, since we are
setting the real and imaginary partsrof/ariables to zero, but have a 1-parameter choice of points
where this can occur. Without loss of generality, we suppose thanthislerivative is real and
positive. By making &C'-small perturbation of, we can make the value éfhighly oscillatory
near 6,, thereby wrapping around the origin a number of times. However, sin€&-small
perturbation does not change thil derivative by much, the sign of the real partfofan change
at mostn times neard,, so the argument of can only increase or decrease vy or less. The
difference between these two extremes iigr2 or a change in winding number of

To change the index by an integer, therefore, we must have the function vanish to various
orders at several points, with the sum of the orders of vanishing adding Tthe generic event
is for f (but notf’) to vanish atm different points—this is a codimensian event, analogous to
havingm zeroes of a polynomial cross the unit circle simultaneouslgnatifferent points. All
other scenarios have higher codimension and are analogous to having two or more zeroeas of the
zeroes crossing the unit circle at the same point.

The situation is different, however, when the functioand the first derivatives all vanish at
a pointf,. Then the higher-order derivatives are not protected f@rsmall perturbations and,
by making such a perturbation, we can chafhgeto a function that is identically zero on a small
neighborhood o= #,. By making a further small perturbation, we can médke&rap around the
origin as many times as we like near 6,. More specifically, iff is zero on an interval of size
5, then, for smalle, T(6) = f(6) + ee’N? will wrap around the origin approximateN 8/27 times
neard,. By pickingN as larggpositive or negativeas we wish, we can obtain arbitrarily positive
or negative indices. As long as we takesN~', this perturbation will remain small in the'
norm. |

The results of this section can be extended, with minor modifications, to the algebra of matrix
valued Toeplitz operatotsvhere the index is related to the winding of the determinant of a matrix.

VI. QUANTUM HALL SYSTEMS

A. Phase diagrams of soluble models

Phase diagrams of the quantum Hall system describe the dependence of the Hall conductance
on parameters such as the magnetic fidlénd the Fermi energie. There are three idealized
models where the phase diagram can be computed explicitly: The Landau Hamiltonian in the
Euclidean plane, whose phase diagram is shown in Fig. 2; The Landau Hamiltonian for the
hyperbolic plane, whose phase diagram is shown in Fig. 3 and Harper models in thé°Slane,
whose phase diagram is associated with the Hofstadter butterfly, shown in Fig. 4 for the case of a
tight binding model on a square lattice.

These are not models of Toeplitz operators, and none of these models are generic, especially
insofar as all of them have symmetries. However, we consider the extent to which they follow the
generic phase rules gémooth, complexToeplitz operators anyway. Where these rules are not
followed, we consider how a small generic perturbation might restore the rules.

The phase diagram for the Euclidean plane, Fig. 2 satisfies the generic phase rules away from
the lineB=0. On the lineB=0, however, the index takes an infinitely large jump, while at the
origin infinitely many phases meet. Both are forbidden by the phase rules.
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B

FIG. 2. The phase diagram for the Landau Hamiltonian in the Euclidean plane. The shaded wedge contains infinitely many,
thinner and thinner, wedges, with indices that gatte and accumulate at thg axis.

The phase diagram in the hyperbolic plane, Fig. 3, satisfies the generic phase rules outside the
shaded parabolic region. In the shaded region, the operator is not Fredholm and the index is not
defined. This is contrary to the phase rules since not being Fredholm is expected to be a codi-
mension 1 event.

The phase diagram of the Harper model, Fig. 4, is in serious conflict with the phase rule for
(smooth, complex Toeplitz operators: It is knowff, that for a full measure of values of the
magnetic field(irrational, of coursg the spectrum is a Cantor set. Since the boundary between
phases is contained in the spectrum, this suggests that any point on the boundary between any two
phases can also be on the boundary between infinitely many other phases. This is the sort of
behavior we observed for bounded operators with no restrictions. However, even in this wildness
there is some regularity. For example, the center of the figure is on the boundary of all phases with
odd indices while Theorem 2 allows for even indices as well.

B

FIG. 3. The phase diagram for the Landau Hamiltonian in the hyperbolic plane. In the shaded parabolic region the operator
is not Fredholm and the index is not defined.
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FIG. 4. The phase diagram for the Harper model associated with tight binding model on a square lattice the plane. Every
point on the boundary between two phases appears to be a point of accumulation of infinitely many phases. Figure taken,
with permission, from Ref. 31.

Remark:To see how Fig. 4 is obtained, we recall that for a tight-binding model withgfax
through a unit cell, the Hall conductanae, associated with thgth gap,(provided all gaps below
it are open satisfies the diophantine equafich

poj=j modq. (16)

A similar equation holds for gaps counted from above. In the Harper model it is KAdhat all
gaps except possibly for the central gap, are open.

Finally, consider the phase diagram of the Harper model with a disordered potential. This is
not soluble in the same sense that the previous models are, but there are numerical results for it.
Figure 5, which we borrowed from Ref. 23, shows the phase diagram for a split Landau level in
the Harper model with disorder. More precisely, the diagram describes a Harper model with
fractional flux £ through a unit cell.

Without disorder the conductaneeof each isolated band satisfies the Diophantine equation
similar to Eq.(16), except that for a split Landau bapdandq are interchanged. For flukthe
Diophantine equation fixes the conductances-@2) of the bands at the flanks andl at the
center. Zero disorder is, of course, not generic, and, indeed, there are bandscoaxisevhere
the index is not defined, something that the phase rules for Toeplitz forbid. Under perturbation the
diagram should deform so that these bands where the index is not defined disappear. This is indeed
the case. The diagram in Ref. 23 is obtained by drawiiges emanating from each band where
n is its Hall conductance.

In summary, the wild character of the phase diagram of the Harper model is tamed by disorder
and one finds, remarkably, a phase diagram compatible with the phase rules for Toeplitz operators.
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disorder

FIG. 5. The phase diagram for the Hall conductance of a split Landau level in Harper model with disorder after Ref. 23.

B. Perturbations of Landau Hamiltonians

Motivated by the effect of disorder on the Harper model phase portrait, we next consider the
effect of perturbations on the phase portraits of Landau Hamiltonians. Such perturbations will
modify the phase diagram near phase boundaries. As a consequence one expects a phase diagram
to be qualitatively modified near points of accumulation of phases, even if the perturbation is
small.

Figures 2 and 3 satisfy the phase rules in the region of large magnetic fields, but fail to do so
for small magnetic fields. We now examine how the two figures might be modified to satisfy the
phase rules everywhere.

The phase diagram of the Landau Hamiltonian in the plane, Fig. 2, will be significantly
modified near the lin=0 which, by symmetry, must lie in a region with index 0. A schematic
phase diagram that is generic and close to the Landau phase diagram is shown in Fig. 6.

The phase diagram in Fig. 3 has a region of full measure, the shaded parabola, where the
operator is not Fredholm. This is nongeneric, and unstable. A perturbation might produce a phase
diagram like Fig. 7. Note that the two perturbed diagrams, Figs. 6 and 7 are topologically iden-
tical.

How do the phase diagrams, Figs. 6 and 7, compare with what one finds in experiments on the
quantum Hall effect? For large magnetic fields one finds phase diagrams that resemble both Figs.

B

FIG. 6. A phase diagram that satisfies the phase rules of Toeplitz operators and is a perturbation of the phase diagram of
Landau Hamiltonian in the plane.
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E

B

FIG. 7. A phase diagram that satisfies the rules of Toeplitz operators and is a perturbation of the phase diagram of Landau
Hamiltonian in the hyperbolic plane.

2 and 6 and satisfy the phase rules. For weak magnetic fields one observes a transition to an
insulating phase. The emergence of an insulating phaise index 0 for small magnetic fields is

in agreement with the phase rule and Fig. 6. However, some experfthems numerical
simulation€® have been interpreted as giving evidence to direct transitions from a Hall conduc-
tance of 2 and 3 to the insulating phase. Taken literally, such transitions would violate the phase
rule. However, these results may merely indicate thatBfemall, the phase boundaries of Fig. 6

are too closely spaced to be distinguished numerically and experimentally.

C. Toeplitz operators

The main gap in our analysis is that we have not established a direct relation between the
algebra of Toeplitz operators, where our phase rules are proven, and the class of operators relevant
to (disordered quantum Hall systems.

At the minimum, Toeplitz operators serve as a natural mathematical laboratory. However,
there is a more direct justification for considering Toeplitz operators. The most elementary para-
digm for a quantum Hall system is the Landau Hamiltonian, in which case one has the following.

Theorem 10:Let P be a projection on the lowest Landau levelify and letU be the gauge
transformation associated with an Aharonov—Bohm flux tube at the origin. PhHEP, acting on
the range ofP, differs from a Toeplitz operator by a compact operator.

Proof: A basis for the lowest Landau level is

1
e 172 n=q. (17)

In)=
7 n!

As a consequence
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(m+1/2)! 1
<n|U|m>:5n,m+lm!—\/m%5n,m+l 1_% . (18)
|

In this case, a compact perturbation®UP is not only a Toeplitz operator; it is a simple
shift. However, if the flux tube is placed at a different point, or if the magnetic field is spread out
over a finite region, then we obtain a more general Toeplitz operat®.isf a projection on a
higher Landau level, the same results hold but the calculation is more involveds H projection
onto multiple Landau levels, theRUP is a compact perturbation of a direct sum of Toeplitz
operators, one for each Landau level.

This is not to say that Toeplitz operators apply directly to all systems, only that they apply to
many. There are basic models whé&®& P fails to be Toeplitz. Indeed, an elementary model for
localization is a random multiplication operator, i.el=V,, on |(Z%). This is a caricature of
strong disorder. The eigenfunctions are now concentrated at lattice points. The projéction
(below a Fermi energyis

P=2 [n)Xnl, (19

where the sum is over a random set of lattice points wWith(n)<E, in Z%. PUP is now a
multiplication by a phase. It is an invertible operator and has Fredholm index zero. It is, however,
not Toeplitz.

D. Open problems

It is tempting to directly study the index d@UP, for spectral projection$ and unitary
operatordJ, rather than rely on generic results based on Toeplitz operators. There are, however,
several technical obstacles. The first is tRai P is thought of as acting on Rand® which is a
Hilbert space in its own right. This means that a deformation of the parameters of the system leads
to a deformation of the space RanBe In contrast, our strategy so far is formulated on a fixed
space. The second obstacle is that our results depend on continuity properties while spectral
projections tend to have bad continuity properties that come from a discontinuity at the Fermi
energy.

To overcome the first problem one can repl&dP by an operatoF defined on the entire
Hilbert space with coinciding index. There is large arbitrariness in chodsingut a natural
choice is

F=PUP+P, =PUP+P?=1+P(U—-1)P, (20)

whereP, =1-P.
To overcome the second problem one may want to repfaty a Fermi function. That is,
replaceP by a smooth version

P(B.B.EF)= (21

exp(B(H(B)—Eg))+1°

In that case, howeveP? is no longer equal t®, and the different expressions fBrin Eq. (20)
are no longer equivalent. For each choice, it would be interesting to derive a phase portrait for
index (F) as the temperature, Fermi energy, magnetic field and degree of randomness are varied.

E. Concluding remark

In this paper we explored what can be said about generic phase diagrams of indices of
Fredholm operators. We did not use the fact that the Fredholm operators relevant to the quantum
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Hall effect are of the fornP UP, with P a spectral projection of an ergodic ScHirger operator.
Rather, we considered the index of several natural classesalgebragsof operators. The weak-

ness of this strategy is that we cannot say much that is definitive about quantum Hall systems. In
its defense, we recall that replacing the particular by the generic proved to be useful in quantum
physics in the hands of Wigner, von Neuman, and Dy$6ff Whether it will turn out to be useful

for quantum Hall effect remains to be seen.
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A one-dimensional crystal model is constructed with a complex periodic potential. A
wave function solution for the crystal model is derived without relying on Bloch
functions. The new wave function solution of this model is shown to correspond to the
solution for the probability amplitude of a two-level system. The energy discriminant

is evaluated using an analytic formula derived from the probability amplitude solution,
and based on an expansion parameter related to the energy and potential amplitude.
From the wave function energy discriminant the crystal band structure is derived and
related to standard energy bands and gaps. It is also shown that several of the prop-
erties of the two-level system apply to the one-dimensional crystal model. The two-
level system solution which evolves in time is shown to manifest as a spatial configu-
ration of the one-dimensional crystal model. The sensitivity of the wave function
probability density is interpreted in the context of the new solution. The spatial con-
figuration of the wave function, and the appearance of a long wavelength in the wave
function probability density is explained in terms of the properties of Bessel functions.
[DOI: 10.1063/1.1326458

[. INTRODUCTION

In solid-state physics one-dimensional systems can be realized in several ways. First, a geo-
metric shaping of a material may be fabricated to restrict the width in the perpendicular direction,
and elongate the size in the longitudinal direction. This is the wire or strand model of a one-
dimensional system, and such configurations have been observed experinfeNedljly one-
dimensional electronic systems can be produced from silicon or gallium arsenide by lithographic
techniqueg. There are also materials that tend to naturally have a one-dimensional structure, such
as polycarbyneor cumulend'® Second, the anisotropy of a material can result in one-dimensional
behavior. An example would be a Krogmann salt or a KCP comp8ufttere is also an abun-
dance of research on quasione-dimensional crystals for x-ray emissiamd propagatiohand
various kinds of flow’ The experimentation on one-dimensional systems is widespread and the
theoretical understanding of one-dimensional systems has great practical importance.

Typically, analysis of one-dimensional systems relies on the use of Bloch funtidhss is
a result of the fact that to a very good approximation, crystals have potentials that are nearly
invariant under translation and thus periodic. In practice, impurities and surfaces can alter the
periodicity. The Bloch function solution can be obtained from Floquet’'s theorem, which has been
previously applied to many areas? of research, including transition state dynantits.’

In this work, a complex potentidt-23is permitted, and the wave function needed to determine
the energy band structure is derived, from the Sdimger equation, without using Bloch func-
tions. The form of the wave function solution is expressed as a sine or cosine of a new dependent
variable, and two related functions. In Sec. lll, a transformation is used to obtain a new perspec-
tive on the wave function solution. An exact analytic expression for the wave function is obtained
for a one-dimensional crystal in terms of two functions which are determined in several limits. In
one limit the two functions are derived for the case of small potential compared to energy. The
wave function solution based on this limit is used to obtain the energy discriminant. The energy
discriminant is then used to study the crystal band structure. In the other limit when the potential

15
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amplitude is large the form of the wave function solution is used to explain the expected occur-
rence of wave number harmonics.

The crystal energy band spectrum, is investigated in Sec. IV. The form of the wave function
solution for this application is shown to manifest coefficients that are integer order Bessel func-
tions. The zeros of the Bessel functions point to parameter values where the wave function
solution can be substantially altered. The parameter values relate to the energy, potential ampli-
tude, and the wave number periodicity associated with the potential. Regions around several zeros
are numerically studied to show the dependence of the wave function probability density on the
selection of parameter values near Bessel function zeros.

II. THEORETICAL BASIS FOR THE ONE-DIMENSIONAL CRYSTAL MODEL

The derivation of the equation governing the one-dimensional crystal uses a change of vari-
ables to make contact with the two-level system solution. An equivalence between thdiSgiro
equation for the crystal, and the transition amplitude equation for a two-level system is demon-
strated. As a result of the correspondence, the wave function solution can be derived from the
two-level solution.

A. General time dependent wave equation

The basic time dependent wave equation is discussed to clarify the physical significance of a
potential with a real and imaginary part. However, only the time independent wave equation
derived in Sec. II B is needed for the one-dimensional crystal model. The derivation of the time
independent wave equation begins with the statement of the time dependeittiSgérequation,

'haq)— ﬁzvzcb Vo 1
T T amy Ve, @
wherei-i=—1, mis the electron mass, ands2 is Planck’s constant. Typically the potentis,

is real to permit a correspondence of the dynamics of a wave packet with the motion of a particle
described by classical mechanics. However, in this derivation a more general covhpgex
allowed. To interpret the imaginary part of the potential, decompose the potentisl +iV;,

and take the time derivative of the probability dengiy dd*.

JIP ad  Ib*
=0t —+
ot at ot

*

* h 2 v h 2 * v *
=Q*| — ==——V° b+ —-P mV(D _E(D D. (2)

2im ThdN

A volume integral of Eq(2) followed by an application of the divergence theorem gives

aP

2
W—FV'SCW:—

=ViP, €
where probability current densit,,=#[P* VP —(VO*)D]/(2im). From Eq.(3), it is clear

that the right side acts as a probability source wkers positive, and as a probability sink when

it is negative. A complex potential has been used in the past to model neutron abgfptonl

thus the imaginary potential represents emission or absorption. Thus, in the crystal model the
complex potential is viewed as representing a “prepared” material. The material is assumed to be
capable of absorption or emission.
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B. Time independent wave equation

Assuming an exponential time variation, the wave functibs ¥ (x)e 'EV* for the one-
dimensional crystal, is substituted into E@) to obtain the time independent ScHiager equa-
tion,

h? d*w
_ﬁ_dxz +V(X)\I’=E‘~If (4)

The energy is written aE=#%2K?/(2m) and the chosen form of the potential function is

2 2 |(,YB .
V(X)I%[—TCOS?&X-F TSII"Ia’X , (5)
with variable parameters and 8 and thus,
a2 B? iafB
2,7 _ i —
5 Tk co ax 5 sinax v=0. (6)

The real part of the potential has amplituel€i232/(8m), and the imaginary part has amplitude
h2aBI(4m). Thus, the amplitude of the real and imaginary part are related. Furthermore, the
amplitude of the imaginary part of the potential is linearly related to the inverse of the period of
the potentialo=2m/a. Note also thatv(x)=[V(—x)]*, and consequently the potential has
parity and time reversal symmetry.

To facilitate the solution fol, an exponential variation is factoredt,=c, e~ (#2@)sinax gng
after substituting into Eq(6),

d%c dc
d—X;—i d—;COSaX+ K?%c,=0. (7)

The following two coupled first-order differential equations can also be used to deriv@)Eq.

dc . .

d; _ —iKC,el(ﬁ/a)Smax, (83
dc_ . .

ax — _iKC+e_I(B/a)SInaX, (Sb)

since the derivative of Eq:8a) with respect tox results in Eq.(7). Comparing with previous
work?® it can be seen that, is closely related to the coupled equations governing the two-level
probability amplitude dynamics. Whef is set to one in Eq(8) the equations are identical to the
governing equations for the probability amplitude of a two-level system. A direct correspondence
is obtained if distance is scaled by in Eqg. (6), however this normalization is not convenient for
the later energy band discussion.

Ill. FORMULATION OF THE WAVE FUNCTION SOLUTION WITH A NEW DEPENDENT
VARIABLE

Thex variable used in Eq@8) is replaced with a new variabk in order to gain insight into
the wave function solution dependence on éhand 8 parameters, and to avoid the need for the
use of Bloch functions. The objective is to use a variable that is more natural {®@)Eand also
contains as much of the characteristic behavior as possible.
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A. The wave function solution based on variable S

The previously derived solutidhof the two-level probability amplitude problem relied on the
introduction of a new variabls. In the crystal model wave function solution the variablés
modified by a scale facto. The s coordinate originally was proposed as a generalization to
arbitrary wave number of a variable used previously for a strictly resonance sdl(tiorthis
work, for the purpose of deriving the crystal solution,

s=K J'Xdy e| (Bla) sinay
0

sin(2nax) 2iK cog§(2n+1)ax]—1

n _Tnzo Jan+1 2n+1

K o]
=KxJo+ — 2, Ton : (9)
o n=1

where J,=J,(B/a) is the ordern Bessel function evaluated #/ «. The integral required to
determine thes variable is obtained using the E@A1a) and Eq.(Alb) Bessel generating function
relationg® written in the appendix.

Starting with the unscaledl, , theK scaled solution foc, , needed for the wave function can
be readily derived from a Riccati equation as previously det&fied:

(s+s*)
= CllcO 2 +p

s+s*
eQ+Clzsir{( 5 )—I—p*

eQ* ] e i(Bl2a)sin aX' (10)

whereC,; andC,, are constants depending on initial conditions andghend Q functions are
both the solution of a first-order differential equation,

9P_ ik sin E)Sin(aX) cogs+5* +2p) 1D
dx @ P
(;—Sz—iK sin (g) sin(ax) |sin(s+s*+2p). 12

For the time independent wave function solution the time variable of the two-level probability
amplitude solution has been switched to the spatial coordinat&e complete time history of the
two-level probability amplitude solution is simultaneously manifested in the spatial configuration
of the time independent wave function solution.

As can be seen from E¢P) for s and Eqs(10)—(12), the ratioB/ « has a substantial influence
on the solution ot and thusWV, sinceB/« is fundamental to the variabkeand the solution of
thep andQ functions. Any wave number content that enterappears in the argument of the Eq.
(10) solution and any wave number content entefhgppears in the exponential. The strqsygr
influence is a result oflp/dx and dQ/dx, having a factor ofK sin(B/a)sin(ax)]. This factor
common to both Eq9.11) and(12) can also be written in terms &f

1 d(s—s*)

ET=Ksir‘[(Bla)sin(ax)]. (13)

In selecting the potential, the choice @fa may be large or small. When it is small corresponding

to a weak potential, the maximum value of [§f8/a)sinax] only achieves a value less than the
possible maximum of one. However, under this condition it reflects the wave number selected by
the choice ofa. At small values sif(8/a)sin ax]~(B/a)sinax, anda has the character of a wave
number. The paramet@ has the character of an amplitude, which is consistent with the relation-
ship of 8 to the potential amplitude. Whes/ «= 7r/2, the outer sinusoid achieves its maximum
value of one and the inner and outer sinusoids closely track each other as shown i@Fighd

curve in Fig. 1a) is calculated witha=2. For 8/« somewhat greater tham/2, a new phenom-
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FIG. 1. The function sii{8/@)sin ax] is compared fore=2 with two valuesi(a) g/a= /2, (b) B/a=5.

enon begins to occur. This is illustrated in Fighflwhere nowB/a=5 anda=2. The outer
sinusoid achieves its maximum befooex= /2, and at the peak value of one for the inner
sinusoid, the outer sinusoid has an argument beyo@dand thus it has a value less than one. The
effect is to begin to cause a ripple structure on the peaks pf@ig)sinax]. The ripple is a new
wave number related to the magnitude @/ffw, and thusp/« takes on the character of a wave
number that is greater than This behavior causes harmonics of the fundamental wave number to
enter the solution.

An advantage of the Eq10) solution compared to Bloch functions is that it is completely
determined once th@ and Q functions are specified. Additionally, the form of the solution
provides considerable information about the spatial nature of the wave function. The key point is
that the Bessel functions of integer order evident in sheariable are all oscillatory. The zero-
order Bessel function is one at zero and all other orders vanish at zero. The arguments of the
Bessel functions scale like the ratio of the amplitude of the real part of the potential to the
imaginary part. This ratio can be small and then the solution is described in the region near zero
by the approximate expression,

W =(Cy;c0§ JoKx]+ Cy,sin JoKx]) e (BRa)sinax (14)

Equation(14) result shows in the smaB/« limit that the coefficient ofKx is the zero-order
Bessel function. BecausgyKx is the first term of the real part of, it persists as theB/«
argument is increased. A8/ a=2.4048 the zero-order Bessel function has its first zero. This
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means that the character of the spatial variation contributesittsf dramatically changes at this
location in parameter space. In other words, selegihg=2.4048 switches off the linear spatial
variation contribution o6+s*. There are an infinite number of zero-order Bessel function nodes
where this occurs. The other terms ®f s* are even harmonic sines with even-order Bessel
functions as coefficients. Thus, it is equally possible to switch off any particular even harmonic
contribution froms+s*, and this may be done at any of the infinite set of available zeros.
Because the nodes of the integer-order Bessel functions are interlaced, the selection of the term to
switch on or off can be done while leaving all other terms at a finite value. Another interesting
feature is that as the order of the Bessel function increases the first zero appears at a larger value.
For largepB/ «, the asymptotic form

_ Za)llz B mn
I~z a2 %

shows an increasing density of nodes contributed by ever larger Bessel function orders. The
spacing between nodes is approximately

From Egs.(11) and(12) it is clear each of these functions is similar since/d shift in thep
function in the argument of the sine on the right sided@¥/dx givesdQ/dx(p+ w/4)=dp/dx.
Additionally, bothdp/dx anddQ/dx are proportional to s[iig/a)sin(ex)], which by using Eq.
(Alb), can be expanded as

, (19

=220 Tons1SiM(2n+1)ax]. (16)

sir{ésin( aX)
o

The form of this result reveals thatandQ can be controlled to some degree by selecfitg to
coincide with a zero of any odd integer-order Bessel function. For example, to eliminate the
sin(ax) term, B/« could be set to the first zero, 3.832, @f or a zero at a larger value @/ «.
The odd-order Bessel functions, as also in the case of the even-order Bessel functions, are nearly
zero until the argument is comparable or greater than the order. Thus, it should be expected that
the higher-order harmonics of EQl6) have a minuscule effect unless ti##a argument is
comparable or greater than the order. In the vicinity of the first peak, there is dominance over the
magnitude of all other Bessel functions.

Each integer-order Bessel function has an infinite number of nodes. The primary parameter,
Bl is aratio and thus, there are two ways to select any particular Bessel zero. First, the potential
period which corresponds twcan be set, and then the real potential amplitude which corresponds
to B can be scanned. Secongican be set and thes can be scanned. As gets small, the ratio
Bla can be made large. The method of seleciitig determines the weighting between the real
and imaginary part of the potential. It is also possible to diminish the influence of a Bessel
function, and consequently its associated harmonic by se@iagless than the order. The oscil-
latory behavior of a Bessel function with an approximatperiod does not begin to be significant
until the argument of the Bessel function exceeds the order.

B. Analytic solutions for the  p and Q functions

The functionp has a nonlinear dependence sipcappears as an argument of the cosine in
Eqg.(11). However, an analytic solution can be obtained for this equation assuffihg<<1. This
is possible becausep/dx scales likeKB/a whenKB/a<1. From EQ.(9) at small 8/ «, it is
found s+ s* ~2Kx.7,. Under these conditions, E¢L1) becomes

dp

&=—|K sin

(g) sin(ax) |[cog 2Kx 7). (17

If «is chosen such that=2K7,, then Eq.(17) is a perfect derivative and
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—iK {( A ) 2K K 18
p—Eco Ko sin(2KxJp) _E' (18

For the situation where:# 2K 7y,

p=iK 71 19

cofa+2KJy)x—1 cofa—2KJy)x—1

Also, to lowest order in3/«, Eq.(12) becomes forw=2K 7,

Q=- 2inlf Sin(2Kx 7o) sin(2Kx Jp)dx

sin(4KxJ7p)

4KT | 20

and fora# 2K 7y,

Q= —2in1f Sin( ax)sin(2KxJ7p)dx

sin(@—2KJp)x  sin(a+ 2K Jp)x

a—2KJ, a+2KJ,

(21)

IV. RESULTS AND DISCUSSION

An interesting aspect of a periodic potential is the advent of forbidden energy regions. The
approximatep andQ functions of Sec. Il B are used to determine the energy band structure with
a fully complex potential. A numerical solution is calculated and the formula of Hij.is used
to explain the observed wave number behavior of the probability density.

A. Energy band structure results from the analytic solution

In past research where the Satlirger equation potential is periodic, energy band conditions
have been derived from wave function boundary condifibnsthe properties of the wave equa-
tion solutions™ In this work the energy discriminant, based on properties of the wave equation, as
described by Bend&tis used:

AE=V(0)+P5(w), (22
wherew is the period of the potential. For allowed energy regitsergy bandsthe constraint
satisfied by the discriminant {& E|<2, and for disallowed region&nergy gaps|AE|>2. The

wave functions in the energy discriminant formula must satisfy specific conditions¥prat
x=0,¥,(0)=1, d¥,/dx(0)=0, and applying these conditions to the Ef0) solution,

s+s*)
\I’l=[co{( > +

and for¥,, atx=0 the conditions ar&,(0)=0, d¥,/dx(0)=1,

(s+s*)
2

iB
Qp P
p|e¥+ 5 sin

+p*

eQ*]ei(ﬁ/(Za))sinax, (23)

1
\IIZZR&n

(s+s*)
2

+ p* eQ* e—i(ﬂ/(Za))sin ax (24)

Substituting the Eq923)—(24) wave functions into the Eq22) formula for the discriminant,
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AE=2 RdcogKwJy+p(w))e A]. (25)

The final form of the energy discriminant is intended to use the strictly imaginary Sec. IlIB
formulas and in that case E@®5) becomes

AE=2 cosKwJp)coshpi(w)]cog Qi(w)]—2 sinKwJp)sini pi(w)]siN Qi(w)], (26)

ikl

where subscript |
thatK B/ a<1.

As an example, consider the discriminant plotted in Fi@) 2or «=4. and3=0.01. The
dashed lines are placed for reference at the critical values2fThe regions wherpAE|>2 are
forbidden and this condition defines the energy gaps. As can be seen there is a local minimum
aroundK=2,6,10 and local maximum arouri=4,8,12. This is expected sin¢&~1 when
Bla<1 and the argument of the cosine in E85) is nearlyK2#/4. The local maximums are
greater than 2 and the local minimums are less th@&h This means the solutio has both
periodic ¥V (x) =¥ (x+ w) and antiperiodic solution¥ (x)=—"Y¥(x+ w). This behavior is quite
different than a potential such asi™*(x) (N=0,12...), where Bendét found no antiperi-
odic solutions existed.

Since the discriminant variation near 2 is difficult to see in the full plot of Fi@),2an
additional two enlarged plots are shown in Figgb)2and Zc). In Fig. 2b) the abscissa is
restricted to 3. K<4.1 and the energy gap region of X8 <4 is clearly visible. The maxi-
mum value iISAE=2.027 82 aK = 3.897. In Fig. Zc) the abscissa is restricted to ZK<8.1 and
the energy gap region is 7.85% <8. The maximum value IAE=2.0100 atk =7.937. These
two gaps illustrate the diminishing gap width ldsor energy increases and also the diminishing
amplitude ofAE—2. To go to largeK using the approximate Sec. Il B formulas it is necessary
to reduceB or increasey, in order to maintairK 8/ «<<1. In the limit the Eq.(25) result indicates
that theAE function oscillates betweet 2.

denotes the imaginary part. The restriction on the application of(E§). is

B. Numerical results

It is not apparent from Ed~7) that there are any special valuessfnd 8 which would cause
substantial changes to the solution. However, when the wave function is written in the form of Eq.
(10), itis clear thes variable is fundamental to the solution. As discussed earlies ttagiable has
drastically different behavior which depends on the properties of Bessel functions. The same
situation is also true of thp andQ functions. The first place a very different behavior occurs is
at the first zero of7, whereB/a=2.4048. At this value the linear term ef KxJ, vanishes and
s becomes a bounded function. For this condition the results of Sec. 1lIB are still vaid if
<1/2.4048,

p=2iKJy(cosax—1)/a, (279
Q=0. (27b)

To recover a finite value fo@, a somewhat less restrictive requirement of sri{dlk can be
imposed. The differential equation f@, Eq. (12) can be directly integrated {f is known. The
differential equation fop, Eqg.(11) can be viewed as

dp 1 .
) = 5cogs+s* +2p), (29)
which may be formally written
f dp _s¥-s 29
cogs+s*+2p) 2 (29
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In the events+s* is precisely constant, EG29) can be immediately integrated without approxi-

mation. WhenK/a<1 andp/« is set to the value of & zero, thens+s* is small and nearly

constant. On the basis of these properties ofsthrariable an analytic solution, referred to in past

work as the dwell point solutioff has been derived. It is most accurate wheis large ands/ a

is near a zero off,. The dwell point solution gives the expectation that the wave function is very

different, depending on whether or n&t s* is approximately constant.
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For general values o/« and B/« needed to explore the implications of the constancy of
s+s*, it is necessary to resort to numerical calculations to obtain the wave function. A useful
function to illustrate the spatial behavior is the probability density. Using(Hg). it follows the
probability density can be expressed in termg pfasP=c, c* , and thus it is only necessary to
calculatec, . Applying the boundary conditionsy';(0)=1, d¥;/dx(0)=0, to the Eq.(10)
solution,

iB . |(s+s*)
QL *
e +2KSIF{ 5 tp

s+s* *
c+=cos{( 5 )+p e, (30)

From Eq.(7) it is clear that the coax coefficient ofdc, /dx is expected to result in harmonics of
wave numbew in the solution. The source of other wave numbers unrelatedaie revealed by
the form of Eq.(30). As an illustration the probability densitjor a convenient ordinate scale the
normalizedV has been multiplied by 100s plotted in Fig. 3 fora=2 and K=0.4, which
adequately satisfies th€/a<<1 criteria. In Fig. 3a), 8=16.9 and it is seen that there is a
dominant small wave number evidenced. The probability density plot is observed to have a period
of approximately 153, which is far greater than the expected fundamental length/¢22)
=1.57. This can be understood by considering the formula for varable Eq. (9) the formula
shows that the argumens{s*)/2 in Eq. (30) has a linear term oK Jyx=0.022 2X. There is
also a linear contribution frorp,~ —0.002 254. The associated wavelengthrX 2 (K 75+ p,))
=157 which is very close to the period of 153 plotted in Figa)3The wavelength is almost
completely determined by, since|p, /x|<KJ,. The period is about half the wavelength asso-
ciated with the smallest wave number in the solution since it appears as a sq@ar€ha large
thickness of the curve in Fig.(8 is due to the comparatively rapid oscillations related to the
expectedy wave number and its harmonics. In Fighg 8=17.1 andK 7;x=0.011 3X%. There is
also a linear contribution fronp,~—0.00213&. The associated wavelength istB2(K 7,
+p,)) =342 which agrees well with the plotted result of 340. Again the large curve thickness is
due to the expected wave number and its harmonics. For a modest changg the long
wavelength evident inPW* is changed by approximately a factor of two. The large change is
caused by the dependence of the sinusoids in(&.on (s+s*)/2 and the linear contribution
from p, . In Fig. 3c), B=17.307 to emphasize the role of the Bessel functions in the probability
density. For this valug/«=8.653 73, which results ih~0. As a consequence the wavelength
associated withK 7,=0 becomes infinite, and it may be assumed that a flat probability function
would result. However, as shown by Fig(cB there is still a very long wavelength present.
Referring back to Eq(30) this feature is explained by the presence of the real pain the
argument of the sinusoids. The equation fr,

% =—K sin (B/a)sinax]sin(s+s* +2p,)sinh(2p;), (31

includes the factor sfiiB/a)sinax] which can be expanded in odd harmonics, si{2)ax, as
shown in Eq.(16). The presence of sia{s*+2p,) on the right side of Eq(31) causes wave
number feedback in a nonlinear manner. Because of the product rules of trigonometric functions,
2 sinf#, sinf,=cog 6,— 6,) —cog 61+ 6,),
2 sinf cosf,=sin( 61+ 6,) +sin(6;— 6,), (32

2 cosf, cosf,=cog 0,— 6,)+cog 1+ 6,),

the right side of Eq(31) contains sum and difference wave numbers. The result igpthaitains
a linear term. For the example of Fig(cB the linear term of, is —0.002X which corresponds
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FIG. 3. The probability density forr=2, K=0.4, and three3 values:(a) 3=16.9, (b) 8=17.1, (c) B=17.307.

to a wavelength of z/(2X0.0021)= 1495. This agrees with the half wavelength of 750 plotted in
Fig. 3(c). Thus, even though there is no linear contribution fre#fs* the linear part op, causes
a very small wave number in the probability density.
In the example of Fig. 38 varied from 16.9 to 17.3 and the changeffvas observed with
K constant. In most instances of a physical system the potential is given and the energy can be
varied. This amounts to a fixaed and 8, with a variableK. The Q function is obtained from Eq.
(12) and does not appear on the right side. Thus, the differential equatidp f®mot nonlinear
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and therefore) is known as soon gs is determined. The most important consideration is then the
dependence gf onK. To assess in a qualitative manner hidvinfluencesp, introduce a variable
u=Kx. Thes variable then becomes

sin(2nau/K) 2iK < cog(2n+1)au/K]—1
n _Tnz’o Jon+1 2n+1 - (39

K o0
s(u)=uJo+ = > Jon
dn=1

Now K does not appear in the linear term, however it behaves as a scale factar Toe p,
differential equation is no longer proportional kg thoughK scalesa in the sine argument, and
appears irs(u)

%= —sin (B/a)sin(au/K)]sin(s(u)+s* (u)+2p,)sinh(2p;). (34
As K increases the effective wave numbewdK decrease in the(u) variable and also in the
sin (Bl a)sin(au/K)] term. The net effect is that at largkrthe linear part op, gets larger. As an
example, consider the probability density @2, and 8=16.9. In this example there is no
concern for smallness of any parameter as required in Sec. Il B or the dwell point solution. In Fig.
4(a), the probability densityfor a convenient ordinate scale the normalidethas been multiplied
by 100 is plotted forK=1.1, showing the probability density is rich in structure at thevave
number and its harmonics. There is also a much longer wavelength visible. For this example
KJ7,=0.061 1352 angh,~ —0.044 275&. Combining these two contributions produces a wave-
length 27/2(0.061 1352 0.044 27563 186, which is in good agreement with the wavelength of
185 displayed in Fig. @). Likewise in Fig. 4b), for K=1.2, K7,=0.066 6929 andp,
~—0.0570178. Combining these two linear contributions produces a wavelength
2/2(0.066 6929-0.057 0173) 325. This is within 5% of the wavelength of 343 in Figh# A
small 9% change oK from 1.1 to 1.2 causes about a factor of two wavelength change. Note that
asK increasegp, /x| increases more rapidly thd€.7,. This phenomenon admits the possibility
that the linear contribution from, can, at a particulakK value, equaK.7,. Because the signs of
these terms are opposite in this exampleKat1.3005 they cancel, and as shown in Fi¢c)4
there is no longer a long wavelength evidenced. Actual§.7,=0.0722785 andp,
~—0.072 266% which results in a wavelength of 2<5L0°, which is only visible after calculating
out to aboutx=25000. At higheirK>1.3005 the long wavelength returns. The abscissa in Fig.
4(c) is only plotted out to 100 to keep the short wavelength from producing a black rectangle
filling the plot area. The curve shows a set of periodic major peaks with three minor peaks in the
top third of the amplitude.

V. SUMMARY AND CONCLUSIONS

The wave function for a one-dimensional system, having a complex periodic potential has
been analytically derived in terms of a varialde which is the weighted sum of the familiar
two-level system probability amplitude. The analytic solution has the form displayed ifl8q.
with a dependence on complex variableand functiong andQ. The formulation of the analytic
solution relied on the use of the varialde which contains a substantial portion of the trigono-
metric argument of the solution. The varialdehas a linear term irx with Bessel function
coefficient7,, and a sum of even harmonics of the potential wave number with even integer-order
Jon Bessel coefficients and a complex sum of odd harmonics with odd-gigler, Bessel coef-
ficients. The solution in Eq(10) is exact whenp is known precisely and) can be precisely
determined fronp analytically or determined to high accuracy through numerical integration. In
general, the number of terms used to spesifgnd the degree of approximation pfand Q
determines the precision df. The wave function solution was shown to correspond to a medium
which exhibits absorption or emission. This is viewed as a prepared medium and thus is a special
material or state.
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The equation solved by in Eqg. (6) has also been solved in the past using series of Bloch
functions. Obviously the Bloch function solution contains all the same information of thel8)q.
solution, however the Bloch function solution does not provide a method of understanding the
dependence of the solution @nand 8 parameters. On the other hand the rolexafnd 8 is clear
in the s variable. Thes variable also points out the importance of zeros in the Bessel functions
with respect to selecting interesting valuesaofind 8. In addition the basic functiong and Q
each have a differential equation with a factor of] §ithe)sinax]. It was shown that foiB/ «
< /2 the ratioB/ « has the character of an amplitude. However,86&> /2, the ratioB/« has
the character of a wave number. Consequently3/as is increased there is harmonic generation
of the fundamental wave number contained in the solution.



28 J. Math. Phys., Vol. 42, No. 1, January 2001 John K. Boyd

The new wave function solution requires the determination of just two functjprsid Q.
The form of the solution based on these two functions displays integer-order Bessel functions. The
Bloch function series solves the same equation and thus it is possible to expand tfi€)Eq.
solution and derive the Bloch function series. The expansion procedure uses t8@)Eglations
and the Eq(A1l) relations in the appendix. The resulting procedure produces a series with coef-
ficients that are products of Bessel functions. Thus, the coefficients of the Bloch function series
must also be products of Bessel functions that depend and 3.

For Bla<l, Jon,~0, J5,+1~0 and thenrs is real ands~xK.,. Using this approximation
and restrictingk 8/ «<<1, analytic solutions fop andQ were derived. The analytic solutions were
then applied to form wave functions used to determine the energy discriminant. The energy
discriminant, which becomes a completely analytic function in this limit, was used to map the
energy bands and gaps. The diminishing amplitudeA&—2 was illustrated as well as the
reduction in the energy gap width &sincreases.

As discussed earlier, the solution derived foandQ in Sec. IlI B requireK 8/ a<<1. This
restriction must be imposed on the solution becausg/as-1 the couplings betweep, andp;
cannot be ignored and the solution requires the calculation of several difficult integrals. This
difficulty can be overcome for a restricted parameter range. The solution can be extended based on
an analysis of the behavior of tleevariable. The main property of that is useful in the con-
struction of a largg3/ « solution is the highly nonuniform behavior d&/dx(«, ). As x changes
uniformly, s only changes uniformly whef/ « is small. AsB/ « is increased beyond @l.s/dx can
be positive, negative, or very small. When it is very small ¢hefunction tends to be approxi-
mately constant. Consequently, the solution under this condition is referred to as the dwell point
solution. The dwell point solution relies on the validity of the issue of localitg-6%*. For the
circumstance of precisely constait s*, Eq.(29) can be immediately integrated. Over a spatial
region in which thes-plane trajectory is localizeds+s* is approximately constant, and thus
separability of Eq(28) is a good approximation. The best locality is attained near a ze(@, of
with « large.

An interesting property of the integer-order Bessel functions is the oscillatory nature with
regularly spaced zeros. The zeros of the Bessel functions point out interesting valuesiaf
where the character of the solution can be substantially altered. Regions around several zeros were
numerically studied in Sec. IV B to show the dependence of the probability density on the selec-
tion of parameter values near Bessel function zeros. At fikeavith =2, the potential ampli-
tude 8 was scanned from 16.9 to 17.3. It was shown that the appearance of the long wavelength
in the probability density depends on the sizefgfand any low frequency contribution frop} .
Furthermore, even wher, was identically zero there remained a long wavelength. The long
wavelength inP for this case was demonstrated to be caused by the part lofear in x.

Normally in a physical system the potential is given and the energy can be varied. To study
the probability density under this conditiggwas set to 16.9 witw=2 and therK was varied
from 1.1 to 1.3. It was found as in the previous example that the long wavelength in the prob-
ability density depends on the size g§ and any low frequency contribution frop} , except at
K=1.3005. At this particular value the linear partmfis equal and opposite to the linear part of
(s+s*)/2 and consequently the probability density does not have a long wavelength. Instead it is
spatially distributed in very short wavelength peaks. The great difference between the spatial
configuration with and without a long wavelength present hints at the possibility of a new semi-
conductor device. The switching action between the two modes occurs for a specific energy at
fixed @ and .
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APPENDIX: BESSEL GENERATING FUNCTION RELATIONS

coz(ésin 0) =TJo+ 2;1 Jon COS2N6), (Ala)
sin('gsin 9) -~ 2?0 Tons1SiM(2n+1) 6], (Alb)
cos(gcose) =T+ 2n§1 (=1)"Joncog2n60), (Alc)
sin(gcosa) = 2§0 (—1)"Tops 2SI (20n+1)6]. (Ald)
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We discuss spectral and resonance properties of exactly solvable Dirac Hamilto-
nians corresponding to a surfadeand &’ interactions. First, we study spectral
properties for&-sphere ands’-sphere models. Next, we analyze the resonance
phenomena for the same models with specific boundary conditions20@&L
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[. INTRODUCTION

The solvable models play a fundamental role in many areas of physics as they are simple and
lead to much insight into the structure and properties of more complicated phenomena. Popular
examples of such models are represented bysthaed 6’ -sphere interactions which have been
used in the recent past to describe various physical properties related as well to scattering theory
as to spectral propertig€see Ref. 1 and the references therein

While these interactions have been deeper studied in nonrelativistic quantum mechanics, their
profound analysis in relativistic theory was still missing. Some recent ¥oflksm at extending
our knowledge tos and &’ interactions in relativistic quantum mechanics.

We pursue here the same objective and provide a systematic analysis of spectral and reso-
nance properties of and &’ -type interactions for the Dirac operator with boundary conditions of
the first and second type.

The paper is organized as follows. In Sec. Il, basic spectral properties are presented and
analyzed. In Sec. lll, we discuss the resonance properties. Section IV is devoted to some final
remarks.

Il. BASIC SPECTRAL PROPERTIES OF & AND §6’'-SPHERE INTERACTIONS
A. The models

The expressions describing formally the models are of the’type
H=Hp+V(|x|), xeR? (2.1
whereHp is the free Dirac Hamiltonian:
Hp=—icaV+BMc? (2.2

M being the Dirac particle massthe complex imaginaryié=—1), c the velocity of the light,
V the standard nabla operator whileand 8 are the Dirac matrices,
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o=c' (v=1,2,3) are the X2 Pauli matrices:

1_(0 l) 2_(0 —i) 3_(1 O) »
7l o 77N o) 770 —1) @9

V(|x|) represents the potential that could be expressed as

N
> and(|x|—Ry),

V(Ix)= or (2.9

N
> Bmd (|X|—Ry), NeN*, N<o;
m=1

am,Bme R andm stands for the number of concentric spheres of rRgji
The method adopted for the study of these singular interactions is based on the von Neumann
theory of self-adjoint extensions of closed symmetric operators in Hilbert spates.

Let us consider the closed symmetric operator,

H=Hp, (2.6)

with the domain
D(H)={ye H"AR})@C*, ¥(Sz )=0}, 2.7

whereSg_={xe R3,|x|=Ry} is the closed ball of radiuR,, centered at the origin ift3, and

HXP(Q) is the Sobolev space of indicek,p).
The state Hilbert spack is decomposed as follows!

% j+(1/2) » j+(1/2)

=@ O <§7Wu269 D 1Ol (2.8

=) 1=]-(12) p=-] =) 1=j-(1/2)
H;, is the radial space:

f(r)

g’ f,geL?((0),r?dr)¢, (2.9

Hii =[ ¥(r) e L3(02))® (3 1//(r)=(

and[Q;,.(0,9)] is a space generated by the spherical spinors,

[T+
;T/i Y -2 0,0) L
Q5 ,.(0,9)= . , for I=j——=, (2.10
J—n 2
m Y|,,u+(l/2)( 0,¢)

[i—u+1
—\— Y| ,_ 0,
N ST+ 1 lu—(12)( 0, 0) o 1
1.(60,0)= , for I=j+ =, 2.1
W YI,,u+(1/2)( 0,¢)

where the spherical harmonics provide a basid f{iS?) (S? is the unit sphere ift®) and denote
the linear span of vectors ih?(S?). j,|I,u are the quantum numbers that characterize the total
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angular momentum, its orbital and thifchagneti¢ components, respectively. Next, the following
isomorphism is introduced in order to separate in each subspage the radial part of the
operatorH and to remove the weight factof from the measuré?*

Uj: Hjy—L%(0),drne?,
(2.12
rf(r)
= (U )(r)= (—1)i~'"-Warg(r))"
This yields the following decomposition 6{:
o j+(12)
H= @ D UjLA(0),dNa IR [Q) ... Q] (213
j=(1/2) 1=j—-(1/2)
Provided the decompositiai2.13, one definedd as
] © j+(102) )
H=@ & u;™hu;d1 (2.14

j=(1/2) 1=]—(1/2)

where “the component operatorh“ is self-adjoint and represents the radial quantum Hamil-
tonian,

h“: =T, (215)

with the domain
D(hy)={e L2(02))® % ¢,y € AC,((02) —{R});hy e L2(02)) @ (2},
{R}+={Ry,R,, ... Ry} (2.19

and the physical constaft; = (— 1)1 ~'*(M2(j + 3).

From this point, it remains only to characterize the deficiency subspace which should lead to
a rigorous mathematical definition of the formal expresg@a). Indeed!~’ one can easily show
that defqﬁj,) =(2N,2N) and that all self-adjoint extensions are characterized bi)% parameter
family. However, two special families of restricted number of parameters must be considered in
accordance with the boundary conditions. An account of the method of obtaining the two families
of boundary conditions can be found in Refs. 5, 6.

B. Basic spectral properties with boundary conditions of the first type

1. The é-sphere models

We analyze the spectral properties for thephere interaction, for a finitely manysphere
interactions and for @&sphere coupled with a Coulomb type potential, respectively.
(i) The formal expression describing the ofiephere model is

H=Hp+ad(|x|—R), aecR, xeR>. (2.1

The boundary conditions which characterize each of the two special one-parameter families of
self-adjoint extensiongs.a.e). of the free Dirac Hamiltoniaidy are
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9(kR)=g(KR )= —f(KR)+A,

(2.18
f(k,Ry)=1(k,R)=f(k,R),

or

f(k,R,)—f(k,R_)=— gg(k,R)JrB,

(2.19

f(k,r) andg(k,r) are the first and second components of the wave function, respectiyetyy,
A andB are nonvanishing constants;is the velocity of the light.
The first family of s.a.e. labeled hy reads as

hj|,aj,57',

D(hjl,aj,):{l/f(r) eL2((02))®C%; f;; € ACh((02));

051 = ACi((07)—{RD; g5i(R)=g5(R )= —T(RI+A;

it o, e L2(02)) 0 (2. (2.20
The second family of s.a.e. is defined by
hj|’0“ET,

D(hjig,)={¢(r) e L2((02))® (% fj; e ACKd(02) —{R});

(%
9ji e AC((0)); i (Ry)—fj(Ro)=— Egj|(R)+ B;

hii g, e L?((02))® (2. (2.2

The resolvent is of a great help for the deduction of relevant physical properties as the
scattering elements, the resonances and the spectra. The resolhgmjloandHa are given by

the following Theorem.
Theorem IL.1: If aj#0, then the following holds
(i) The resolvent of p,a“ is given by

—aj /c
1+ (ay I0)[FP(kRIGP(k,R) ]

(hjl,aj|_k2)71:(hj|,0_ k%) "1+

10

X
0 1

) Wi (—K), )y (K); KPe p(Njt o), IMk>0. (2.22

Gjio=(hj o—k* ™!, Imk>0, is the free resolvent kernel:

Gihk ) Gk )

GA (k,’r’rl): = ! ! = ! ’ !
1o g9 ) YK )

(2.23
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where

Gk NHFPK r); 1<,

(|) K’ 2.2
Giio(k"rr) = FOK DGPK 1), 1>, (224

and

Gk NFP(Kk 17y, 1<,

Gllg (K rr=1 ~ (2.29
e FOK NGOk 1) 1>
F, FP, 6 and G are given by
Kk’ 7Kj|7(l/2) 3
(O)(k/ ry= ( ) r Kj|+ E) rllz\]Kj|+(1/2)(k/r),
i 1 Kk’ Kj|+(l/2)
GPUK == 5w | 5 r2HE), (k')
2 T(K;+(3/2)\ 2 jtn)
2.2
o k' —Kj|+(1/2) 1 ( 6)
( )(k’ r) ( ) I Kj|+§)r1/2JK“(1/2)(k’r),
(0) i 1 K’ Kj|*(l/2)
K0==7 T, + w2y 2 M-k,

where K2=c~2(k*~M?2c*), J,(2) and H?(z) are'***the Bessel function and the Hankel func-
tion of the second type of ordet respectively ; (k',r) is given by

FOk' nGPk' R +FP(k" RGPk 1)
w"'(k”r):(ﬁ}P(k',r)G}P)(k',RwF}P’(k', >G§P><k',r>)' 220
(i) The resolvent of H is given by
H— =)+ D D D e
« ° i~ 1212 12 me 1 11 (ay IOFP (KRGO, R) ]
X[ W (0@ Q) 11 1 3 (0@ Qjim s K2 e p(H,), (2.29

with the notation

(050, _(‘/’unlﬂ(ilm)l) " _(‘lf(il)l) 0. _(Q(Jlm)l)
2 I g, Lamy, ) Van,) ™ Qgimy,)”
p(-) is the resolvent seH ,:=H [see Eq. (2.1))

Proof: By means of Krein's formuf and after a straightforward computation performed as
in Ref. 4, the resolven{2.22 is deduced. Expressiof2.28 follows from the decomposition
(2.13. [ |

Theorem I1.2: All self-adjoint extensions of the extended Dirac operator Hp+ V(| x|)
with deficiency indice€,2) have the same continuous spectrum as that of the free Dirac operator
Hp; this spectrum is purely and absolutely continuous and equals, —Mc?] U[Mc?,+ o[ .

Proof: The first part of this statement follows immediately from the fact that all s.a.e. of an
operator with equal and finite deficiency indices have the same continuous spésteiRef. 10,
Theorem 1, p. 366
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Next, in Refs. 2, 12, it has been proved that the continuous spectrum of the free Dirac operator
is known to be purely and absolutely continuous and equal®, - Mc?] U[Mc?,+ [ taking
into account the following radial equatidin Ref. 2,c=1):

29, K
Mc f—cag+CTg=)\f,

caf+ch—Mc2=>\g, N eR. (2.29

Finally, the spectral kernel of the extended Dirac operator coincides with the spectrum of this
operator. Moreover, the spectral kerneli‘qfa“ contains the spectral kernel bf; ; as the former

stands for the s.a.e. of the latter. So, each part of the spectral kerrh;lvg%f contains the

corresponding part of the spectral kernehgf,. As the deficiency indices of the operatyy ; is
finite (def(h; o) =(2,2)), the continuous part of its spectral kernel is invariant for its symmetric
extensions’ Hence, the free Dirac operatb | o and its s.a.e. have the same continuous spectrum.

Besides, by the von Neumann formdfathe manifold h“ﬂjl—kz)D(hj,‘a“) contains the
manifold (h;; o— kZ)D(hj,,O) and the difference in dimensions is finite. Therefore, the operator
(Mt~ k?)~! is bounded along with the operatdm;(,—k*) ~*.

Theorem I1.3: The singularly continuous and residual spectra of the extended Dirac operator
hj,,a“ are empty

Proof: One can follow step by step the development given in Ref. 2 to show that the singu-
larly continuous spectrum is empty. The fact that the residual spectrum is empty results from the
self-adjointness of the operator. |

The above development trivially generalizes for-2 (def(h;; o) =(N,N)). Henceforth, we
shall restrict ourselves to the study of the bound state equations that are different for different
models as the boundary conditions characterizing these models change.

The bound state equations for the mo¢2ll7) provide elements for its point spectrum and
their solutions are the negative eigenvalues of the singular radial Hamiltbmgjrﬂ. These equa-
tions are obtained from the following Theorem.

Theorem 11.4: The bound state equations relative to the first and second families of s.a.e.
read as

o *TPERLPER) NP 2.30
¢ TPERLPER) +A; c

and
6; +=TO(E,RILIOYE,R) 6
Ao ., B=2B,, 2.31)
¢ TPERLMER-B; c

respectively, where
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=\ —Ky—(1/2)
- 3\[V-E| ~
LJ(P)(EJ)IF Kit3 T) rl/2||<j|+(1/2)(\/—|5r),
=\ Ky +(L/2)
2 V-E|
O)E r)= 1/2 =
Tir(En F(Kjl+(3/2))( 2 ) K2 (VED,
\/— Ki +(1/2) (2.32
i 1\ (V-E| " —
LPE =T Kit+3 T) I’1/2||<]-|—(1/2)(V—Ef),

—\ K —(1/2)
oy 2 V-E| —
T](P)(E,r): ( ) rllzKK“_(l/z)( _Er).

T(K;+(12) | 2

I, and K, are the modified Bessel functions of the first and second type of erdespectively®
Proof: These equations stem from the following eigenvalue equations:

w2 (

d K M gji(E,r) gji(E,r))” ' '
¢ dr
that split into
2_ M2c4
E2_M2C4
g"(E,r)+ —Cz——r—sz,(K“—l) g(E,r)=0. (2.35

A supplementary conditiophysically admitteylis E2<M?2c*. This yieldsE=(E2—M?c*)/c?
<0 and the corresponding separated equations provide the sol(®@®#. Besides, using the
modified Bessel function®.32), the implementation of the boundary conditid@sl8 and(2.19
gives the bound state equatiof&30 and(2.31). [ |
Let us discuss some solutions.
Using relationg2.32), Eq. (2.30 reduces to the equation

1+ a;RK 1 a2V —ER)I Ky + 12V —-ER)=0, (2.39

with aj =(2/A) (aj/c*b), aj; R, beR, for the first family characterized by the parameters
@; ; an analogous equation with adequate parameters is obtained for the second family from
(2.3D).

This equation is similar to that analyzed in Ref{Hg. 2.39], using the monotonicity prop-
erties ofK(-)I(-). For each family of s.a.e., we have two soluticﬁ1§2<0 for o R<—(Kj
+ 1/2) and no solution for; R=—(K;, + 1/2). Obviously, the two solutions stem from the two
possibilities*b in the expression of; occurring in Eq.(2.36.

This result is in good accordance with the wording of Proposition 6.1 given in Ref. 2.
Compared with the nonrelativistic cakéhis result is predictable since two special one parameter
families of s.a.e. are defined in the relativistic case instead of one in the nonrelativistic case
because of the matrix structure of the Dirac equation.

s (ii) Concerning the finitely many-sphere interactions case, the model is formally expressed
a
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N
Hig=Hot X and(|x|—Rmw; xe R, (2.37)

whereHp, is the free Dirac operatog,,# 0, 1<m=<N. Two speciaN-parameter families of s.a.e.
are defined. The first family characterized by the parametgrsm=1,... N reads as

Mc? c —iJrﬁ
dr r

hi|vaj|{R}E

dr

i+ﬁ) —Mc? |
r
DNy o r))={t(r) & L?((02))®C% fj;e AC,((02));

05 ACioe((075)~ {RD; 1Ry ) = g (Ry ) =~ £ (Ry) + Ay

hjt oy (R € L2((0))®C?},{R}:={Ry,Ry, . . . Ry} (2.39

So, for allm=1,... N, assumingy; € R, the negative eigenvalues of the radial extended Hamil-
tonian are given by the bound state equations

an_ *TPERILPERY . am, 239
— — — ’ -~ "\m- .
¢ TOERHLOE R, +AT c

The second family is defined by
D(hjl,0j|{R}):{¢(r)€LZ((OPC))@CZ; 9ji € ACioc((02));

Om
fi1 e AC((02)\{R}); fji(Rps) —fji(Rp-)=— ngl(Rm)Jr Bm:

Nty try e L2((02) @ L2 {RE:={Ry, Ry, ... R} (2.40

The corresponding bound state equations are

G _

¢ TOERWLP(E Ry —BT

+ TO(E, R L{V(E,Rp)

- i om
, with B,=—B]". (2.41)
c

The discussion is similar to that of the odesphere model. Thus, if for each equation we iget
solutions, we can hope to obtain for each family at masizegative eigenvalues by analogy to
the &-sphere case replacifig by R, .

(i) In the model of ones-sphere interaction coupled with a Coulomb potential, the formal
expression describing the interaction Hamiltonian read$ a

H=HD+¥+a6(r—R), (2.42

whereHp represents the free Dirac Hamiltoniapy, and a are nonvanishing physical constants.
We can define two special one-parameter families of s.a.e. according to the boundary conditions
(2.18 and(2.19. For the bound state equations, we state the following Theorem.

Theorem I1.5: The negative eigenvalues &te solutions of the equations
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=T (ERL) (ER) iy,
! Vo: ? Yol:

ajl 7’0

c TR (ERLY) (E,R)+Ayol

le

for the first family and
%1y _

c J(,O; (E, R)L},Og (E,R)—Byol c

¢T<|°> (E.RLP) (ER) 0,
B

for the second family, respectively, where

Yo 1 .
leo(E r= (Z‘E(K—“_dpl—qu ;

En=|s= L pmog,| >R
Titvo 2e(Ky—e) P27 262 T7H

and
(0) _
LJ|yO(E1r) ( 2 P1 ZE(Kl_e)ql)y r<r
= ~ 1 Yo
T E,r :(__ + >R,
]|'y0( ) 2€p2 2¢e(K;—e) a2
with

2(p+1); —2\/_r)

p.(E,r)=r#*texp(\ —Er) 1F1< 1+p—

cJ_

po(E,r)=T[2(p+1)]T

YoE =
XU| 14 p— ———:2(u+1);—2\—Er |,
c’\V-E

E
ql(E,r>=rﬂexpN—”Er>1F1(M— i ~;2M;—2J—_Er),
c2\V-E

E
Q2(E,r)zr(2M)lF(M_ 7 )( 2\ —E)?* Lrrexp(V—Er)
C\/

XU

;ZM;—Z\/—_Er),

_ YoE
cz\/—_~E

( 2\/_)2,u+lru+lexq\/_r

(2.43

(2.49

(2.49

(2.49

(2.47

(2.48
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E=c %(E?-M%c*) <0, e=c?K]— 75, u=€/c. ;Fy(2) and U(z) are the hypergeometric
functions of the first and second type, respecti

Proof: The method of solving the bound state equatienmatrix differential equation analo-
gous of Eq.(2.33] can be found in Ref. 14. Besides, the implementation of the boundary condi-
tions (2.18 and(2.19 using the obtained solutions, gives the equati43 and(2.44). [ |

Next, one can easily apply the technique previously used to carry out a systematic study of
this model.

2. The é'-sphere models

Here, we only sketch some important facts and merely provide a collection of relevant for-
mulas without explicit proofs, since the whole analysis can be carried through as in the previous
subsection.

For the ones’-sphere model, we hafe

H=Hp+as'(|x|-R), @eR, xeR® (2.49

The boundary conditions of the first type which characterize each of the two special one-parameter
families of s.a.e. of the free Dirac Hamiltoni&ty are given by

1 ~
9(kR)=g(kR )= =T 3" (KRO+F (KR +A,

(2.50
f(k,R,)=f(k,R_)=f(k,R),

or

b1 ~
fkRy)—f(kR)=— 59" (kRy)+g'(k,R)]-B,

(2.5)
9(k,R;)=g(k,R_)=g(k,R),

wheref(k,r) andg(k,r) are as usual the components of the wave funckor¥, 6, A andB are
nonvanishing constants. We can easily define two families of s.a.e. accordingly with the above
boundary conditiongsee Ref. 7.
The bound state equations for the first family are
@ +2T(V(E,RLPE.R)

aj|~

Sy a—— —, A=—A,. (252
¢ TERLMER-2A; c
For the second family of s.a.e., we have
B. +TOERLME,R) ~ By~
I i i . with B=-1B,. (2.53
c

2c TERLPER -2B,
The same procedure as that of the previous subsection applied here, yields
1+a RK; +a2(V—ER)I K1 +az(V-ER)=0, (2.54

with & = (1/2A)(&; /c =2b), Bj e R, be R, for the first family characterized by the parameters
a@; and an analogous equation with appropriate parameters for the second family.
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From this, two solutions are possible for each family of s.a.e..&MR<—(2K; +1), we
have one solution with; = (@; /c +2b) and another with; = (&; /c —2Db), while for &;R
=—(2K;;+ 1) there is no solution in the both cases.

Concerning the finitely many sphere case, we hope at méstigenvalues of the above types
for each extended radial operator.

Finally, for the case of on&’-sphere interaction coupled with a Coulomb potential, the
formal model i§’

H=HD+?+a5'(r—R). (2.55

The corresponding extended radial operators are

d K,

M2+ 20 C(__+_")
r dr r

- =Ty (2.56

—+— _MCZ+T

D(hjlyo,’&“)z(J/(r)ELZ((va))@CZ; 1T € ACi((0));
fii e ACo((02)\{R}); 9 ,9), € AC,((02)\{R});

1o ~
951 (kR) =g (KR ) == £ (R )+ (R )T+A;

ity 3, € L2(02)) @ (2 A%0; —o<Ty <+, (2,57
for the first family and

hjl 70;9“ = 7-70’

D(hjiyy.5,)= Y(r)eL3(02)® €% gj1,0) € AC((0.2)\{R});
fi1,f) e AC(0°)\{R}); gji(k,R)=g;(k,R-);
Vil

1 ~
- E[gj,l(k-R+)+gj,l(k!R—)]_B;

fikR) ~ (KR )=

hjl '}’oy’a“ l,[/E Lz((oyoo))®cz,
B20; e <By<r) (258

for the second family.
The negative eigenvalues are solutions of the equations

a FO) (B RTO (B

Fijly, ile«yO(EyR)L”,YO(E,R) Wiy

2 N 0) (F 0) /& ~ ! 70: A'yol! (259
C TjIVO(E’R)LjI')’O(E’R)_ZAyol C

for the first family and
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K 0) (B (OW=
0]'7’0 ileyO(EvR)I—“3,0(E,R) 5 9j|y0~
2 :~(0) E T(0) (& ~ ! 870: B)/ol! (26@
Cc leyO(E’R)L“)’O(E’R)_ZB’}/Ol C

for the second family.

C. Basic spectral properties with boundary conditions of second type
1. The é6-sphere models

Turning back to the one-sphere interaction, the second type boundary conditions are obtained
from (2.18 and(2.19 by interchanging formallyf andf’ (g andg’). We havé

g’(k,R+)—g’(k,R7)=gf’(k.R)+A,

(2.61)
f'(k,R,)=f"(k,R_)=f(k,R),

or

f’(k,R+)—f’(k,R_)=—%g’(k,R)JrB,

(2.62
9'(kRy)=9g"(kR)=9g"(kR).

Following Ref. 4, two special one-parameter families of s.a.e. have been defined accordingly with
the above boundary conditions and the bound state equations read, respectively, for the first and
second families,

. =TERLYER) -
P =00 ay Ca=Pia (2.63
¢ TPERLPERTA c

v _ *TPERLP(ER) 5 i
¢ TO'ERIYER-B, c

B,. (2.64)

The generalization to finitely many concentric sphere interactions and to the one-sphere coupled
with a Coulomb potential follows the same way as previously and the equations express with the
derivatives of the special functiorf2.32), (2.495 and(2.46).

2. The &’ -sphere models

The one-sphere model is formally expressed by Bgt9. Here again, the boundary condi-
tions of the second type are obtained fré250 and(2.51) by interchanging formallyf andf’,

g andg’ with the labelsB and?¥ instead of3 and y in (2.61) and (2.62), that explicitly writes

B1 ~
g9'(k,Ry)—g'(k,R_)=— g E[f(k.R+)+f(k,R_)]+A.
f'(k,Ry)=f"(k,R_)=f"(k,R), (2.65
and
Y

1 ~
F'(k,R)=1"(k,R-)= = 5[9(k,R+) +9(k,R-)]—B,

C
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9'(k,Ry)=9g"(k,R-)=g'(k,R), (2.66

wheref(k,r) andg(k,r) are as usual the components of the wave functorg, 3, A andB are
nonvanishing constants.
The eigenvalues of the bound states are solutions of the equations

B; +TOERLPER .~ By~

Bi_ ( | R=Pia, (2.67
2¢ TPERLP(ER) -2A, c

¥ =T ERLP(ER Y-

Y “TCERLEER g Yig (2.68
2c TP(ERLP(ER-28B, c

The generalization is now standard and we omit it since the technique is the same.

Ill. ANALYSIS OF RESONANCE PHENOMENA
A. The é-sphere models

We deal now with the resonance phenomena for the extended operators. AS°ussal,
nances are defined as poles of the resolvents in the unphysical shédetQmThe resolvent of
h; B using the boundary conditions of the second typ&1) for a one 5-sphere interaction is

given by

B”/C
1= (B lo)F Y (kKRG (k,R)

(th,B“_kZ)_l:(hjl,O_ k?) "1+

1
0 l)(tﬁ,.( k), (K); k?ep(hj g ). Imk>0. (3.1

Gjio=(hjo—k») ™% Imk>0, is the free resolvent kernel,
Gk ) oAk )

(”)(k’,r,r ) (”)(k’,r,r )| (3.2

Gj|’o(k,,r,rl) |:

wheregjﬂ'())(k’,r,r ) andg{jg(k’,r,r’') were previously defined b{2.24) and(2.25. i; (k' .r) is
given by

( )(F}P)(k’,r)fo))’(k',R)JrF}P’(k’,R)G}P(k',r) )
¢J| ' =

~ , , - (3.3
FP(k NG (kR +F P (k' R)GP(K',r)
The resonance equation is then
B (O) ’ ©) /1 ’
1-— (k",R)Gj” (k’,R)=0, Imk’<0, (3.9
ie.,
- B d FOK | x|-60K,n| =0, Imk'<0 (3.5
c |dr _Cldr fr ' '

For the boundary conditions of the first type and for the same interaction, we ¢béginthe
resolvent equatioi2.22]
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1+ - LEO(k RIGI(K,R)=0,  Imk’ <0, (3.6

that is similar to the result obtained in Ref. 1. In this case, for the poles located on the negative
imaginaryk’ axis, letk’=—ix, x>0. Then using analytic continuation of Bessel functions, the
equation(3.6) transforms as follows:

|
1+ TjR||<j|+(1/2)(XR)KK]-|+(1/2)(XR):0- 3.7

Next! using as usual the monotonicity properties of the modified Bessel functions and the bound
LK, (X)=<(2v) 1, »>0, x=0, (3.9

in each partial wave j(), the equation(3.7) has exactly one solutio®;>0 if («;/c) R>
—(2Kj+1). The case ¢;, /c) R=—(2K;;+1) gives a zero energy resonangg=0.

Let us now investigate the solutions located off the imaginary axis.

To make clear our analysis in this context, let us illustrate our study on the first partial waves
corresponding tg=1/2, 1=0 or 1. In the particular case ¢f=1/2 andl=0, K;;=—1 and the
special functions={”) and G{{’ in (2.26 expressed in terms of Bessel and Hankel functions of
index — 1/2. So, the resonance equati@6) becomes

i7TC(0R , ) ,
- 2c J_1ak R)H—l/z(k R)=0, (3.9
that reduces to
. Qo .
1—|mcos(k’R)exp(—|k’R)=O, (3.10

using®

[ 2 2 .
J- 1K' R)= [ 75 codk'R), HG{,Z(k'R)=\/mexp(—|k'R).

Here, aq stands fora;, (j=1/2,1=0). Settingk’ =y—ix, x>0 andc=R=1 for simplicity, we
get

2y — ag exp— 2x)sin 2y —i[ 2x+ ay+ ag expl — 2x)cos & =0], (3.1)
that splits into the following system:

2y —agexp—2x)sin 2y=0,

(3.12

—2X— ag— agexp(—2x)cos =0,

or, equivalently,
2y
—2x=In m s

(3.13

2y 2ycosy )

n aoSsz —ao—w—o, 2ay Sin 2y>0.
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Theorem 1ll.1: The equation (3.13) has an infinity of solutions. Hence, for the partial waves
corresponding to j(j=1/2,1=0), hj,,a“ has an infinite number of resonances off the imaginary

axis characterized by their energies
Proof: To prove the first part of this Theorem, it suffices to show that the function

2y

2y cos
ag Sin 2y

- — A~
°  sin2y

Z(y)=In (3.149

is continuous and changes signs on each part of its domain. First of all, remark that the function
Z(y) is even and, consequently, its graphic representation is symmetric with respecZtattse

So, we restrict our analysis to the positive part of yhaxis, the whole picture being symmetric
with respect to th& axis for a givena,. This domain reads as

Unez+]n7r,(2n+l)g[, Vay>0y>0,
Unez+](2n+1)§,(n+1)77[, V ap<0y>0.

First, let us consider the casg>0. The continuity property is evident. A straightforward
treatment shows that

ImZ(y)=—ag—1<0, lim Z(y)=+0», Vay>0, (3.19
y—0 y— ml2

y>0 y<ml2

lim Z(y)=—o», lim Z(y)=+», Vay>0. (3.17
y—nm y—(2n+1) w/2

y>nm y<(2n+1) w/2

ner_ ner_

A similar analysis can be easily conducted for the cage 0. We have

lim  Z(y)=—c, lm Z(y)=+%, Vas<O. (3.18
y—(2n+1) w/2 y—(n+1)m
y>(2n+1) w/2 y<(n+1)mw

neZz, ne’,

Hence, the first part of the Theorem results.

The second part of the Theorem is a consequence of the former. |

The statements of the Theorem Ill.1 are well illustrated by numerical explorations. Figures
1(a)—1(d) show the functionZ(y) versusy for ay>0. The casexy<O0 is represented in Figs.
2(a)—2(d).

The wording of Theorem I1l.1 can be extended to the general equéiénwith the same
conclusion on the infinite set of resonances off the imaginary axibjfgr“, whatever the partial
wave characterized by the quantum numbgr$ and «; . So doing, the only difficulties one
encounters arise from the complexity of mathematical expressions that appear more and more less
treatable analytically as the quantum numbeend| raise. Taking jusj=1/2 andl=1 leads to
an intricate nonlinear system i andy. Numerical computations allow us to go around these
difficulties.

The generalization to finitely mang-sphere interactions using for example the boundary
conditions(2.61) provide the following resolvent equation:
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FIG. 1. (@) CurveZ(y) versusye]0,7/2[, ay=1. (b) CurveZ(y) versusy e]m,3m/2[, ay=1. (c) CurveZ(y) versus
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FIG. 2. (a) Curve Z(y) versusy e | w/2,a[, ag=—1. (b) Curve Z(y) versusy €3 w/2,2x[, ag=—1. (c) Curve Z(y)
versusy € |57/2,3mx[, ap=—1. (d) CurveZ(y) versusy €7 w/2,4m[, ayg=—1.



46 J. Math. Phys., Vol. 42, No. 1, January 2001 M. N. Hounkonnou and G. Y. H. Avossevou

N
(i1 gy r =KD 1= (o =K 71 X k™ () (U (— k), g™ (K),

m'=1
(3.19
kzep(h“ﬁjl{R}); Im k>0,
with
. Bjllc 10 0; m#m’,
??m(k)_ (|) 0 1 ’ mm’_ 1 _ ’
mm’_(B /C)g (K,Rm,Rinr) , m=my,
FO (kNG (kR +F{P (kR G (k,)
RIS Fio O ol o =) , (3.20
(k)G (kR +F{ (kR G (k,r)

G (KR R ) =F (P (K, Rm G (K, R}

For this model, the resonance phenomena could be more complicated, mixing the resonances of a
specific sphere with the resonance arising from the whole system.

Concerning the Dirac—Coulomb case, Krein's formula provides us with the following resol-
vent equation:

-1 %l 1
(hjl'yo,ajl k?)~* =(hji 0~ K% cDlo 1 ((vl’]l'yo( ),-)l/fjwo(k); (3.21)
K2 p(hy5p.0,): IMK=0,

D=F{) (k' ,RIG{) (k' ,R)—F) (K", RIG) (K, R)+ FP (k",RG{Y (k',R),

My My le 1'70 My
(3.22
Gjiy,=(hji,,0— k)", Imk>0, is the free resolvent kernel:
gt (k',rey gl (k! rrt)
yo(KTor ) Gy (KT,
K',r,r / , 3.2
Bt lC.1r)= { g, (k') Gl K ) 923
where
" G{P) (K, DFP) (K1) i<,
(K',r,r')= , o (3.249
oo Fio,(K' DGR (K1) 1>,
and
S ) G{P) (K, FP) (K1), i<, 58
Oig(k',r,r')y= 3.2
e B0 (K .NBP) (K1) >,
with
1
(0) ’ _ Yo
l'Vo(k = 26(Kj|—6) 2601’ r<R,
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1
@ (k' _L
leo(k ) (K“—e) 2502’ r>R, (3.26
EO (k' r)= A
]I'yo(k r) ZE(K _E)Ul, <R,
1 Yo
(0) ’ _
J|’}/O(k r) 2€(KJ|_E)U21 >R, (327)
and
. kz‘)’o .
uy(k’,r)=r*"texp —ik'r),F, 1+M—|W;2(,u+1);2|k’r ,
X (3.28
Up(k',r)=T[2(p+1)] || 1+ u— 2k’”(2'k )2t rt exp(—ik'r)
k2
XU| 1+ p—i g7 9:2(u+1):2ik’ r)
2
vl(k’,r)=r"exp(—ik’r)1F1( 2k’ ,2,u 2ik’ r)
(3.29

.k 7
vo(k'r)=T2wu) T pi g %) (2ik")2# Lre exp — ik '1)U| u pen 9.2 u:2ik'r

wherek'?= (k*~M?c?)/c?, e=\c°K{ — yj, u= elc= \/KJ-2|—()/0/C)2, 1F1(2) andU(z) are the
hypergeometric functions of the first and second type, respectively.

it 5,(K',1) is given by

Mg Mg My Myg

lﬂjlyo(k,!r) ( (0) (k/ r)G(O) (k,,R) (O) (kr R)G(O) (k,,r)

iMyg le My

FO (k"1 G (k',R)+F (k',RIGP (k',r)
(3.30

The resonance equation is then

<°>(k' R)G(O)(k’ R)— F}P;(k', )GH) ) (K, R)+ (0)(k’ R)G(O) (k’,R)=0, Imk’<0.
(3.31)

Using the boundary conditions of the second type the resonances could be obtained from the
resolvent equation computed in Ref. 4. We have

’8 F(0)’

leo

FiPL(K RGP (K R)=F(F) (K RIG) (K',R)~

Fi), e Fi), 1 (k",RIG{) (k',R)=0, Imk’<0.

167
(3.32
A systematic study of this model can be conducted using the same machinery. The physics

being the same, the only difficulties are of a technical order related to the mathematical expres-
sions that present here a more complicated form.

B. The 6’ models

We analyze the one-sphere case, its generalization to finitely many concentric spheres and the
&'-Coulomb case with the boundary conditions of the second type.
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The resolvent of the’-sphere model fs

(hy1 3,00 =K ™= (1o —K?) ™4 051 (K) (4 (= k), )y (K),

kzep(h“ﬁ“); Imk>0, (3.33
with
— 2R 1 0
0,(k")= — 2Balc) ) (3.39
+(Bjlo)gj(k',RR)\0 1

o [ FIRRNGI (K R+ (K RIGIP(K' 1)
D= O 6ok R+ FRK RIBPK 1)) (3.39
¢y [ FV DGR (K R+ (K RIGP (K1) 536
i ( (0) (1 ) (! ©) (1,1 V()11 : .
FOK NG (kR +FO' (K, R)BP (K1)

’ ! d
gj(k RRI=FP (k' RGP (KR + G (K RIFP (K R)= T [FIP(K' NGP(K )], g

(3.37
The resulting resonance energies are given by
BJ' ’ ’
2+—gj|(k R,R)=0, Imk’<0. (3.38
Settingk’ = —ix, this equation transforms as follows:
2c d
~_2_[rlKj|+l/2(xr)KKj|+l/2(Xr)]r=R- (3.39
Bil dr

In each partial wavej(), the Eq.(3.39 has one solutiox>0 if ,~8j| /c<2(2Kj+1). The case
ZS'“ /c=2(2K;+1) gives a zero energy resonance, @5 0 and there is an infinite number of
resonances off the imaginary axis.

The generalization to finitely many spheres cases is immediate.

Concerning the’-Coulomb case, the resolvenf is

(h

k?) "= (hj, 0= k?) 14— 23“(

W1y —K), )UK (340

J|705| 0 1)

k*e p(hjiyy 5,). IMk>0,
D=2[F{7) (K", RGP (k',R) ~F{) (K, RGP} (k',R)]

LB IR (K RIGE) (K R +FIP) (K RIGI) (K R)1. (3.4

1My Mo

The following equation gives the resonance energies:
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0=2[F{) (K", RIG{) (K ,R)=F() (k" RIG{) (k',R)]
B

s [F{?) (K ,R)GI) (K", R)+F() (K ,R)G) (k',R)], Imk’<0. (3.42

IV. FINAL REMARKS

Our results are very similar to those obtained with singular Stihger Hamiltoniansfor the
same interactions; the only difference lies in the interchanging between the freediBiglero
HamiltonianHy= — A and the free Dirac onklp.

Moreover, as in the nonrelativistic case where the resultg-Bphere and-point interactions
are similart® the results of our study compared with those obtained for point interactions in
relativistic quantum mechanics studied by Gesztesy atth@ire the sanfe® That is the most
interesting information we get from this study. This is predictable since it has been shown that the
&-sphere interactiorH , converges to the-point interactionH,, of strength» centered at the
origin, as the radius of the sphere shrinks to zero with adequate normalization of the coupling
constanta (Ref. 1, Lemma 2.2 The results concerning a systematic studysofind §'-point
interactions including the scattering theory in relativistic quantum mechanics is thus predictable.

Let us now discuss briefly the nonrelativistic lingit>. Following Ref. 14(Chap. V, Sec.
25, 3, the spinors

y _(f(k,r))
‘//( ,r)— g(k,r) ’

the solution of the indicial equatioh;; = k?y, Imk>0, reduce tof(k,r) as c—x, ie.,
lg(k,r)|<|f(k,r)|. This latter coincides exactly with the special functions which span the defi-
ciency subspace in the Schiinger case with respect to the same normalization. On the other
hand, the strategy used in Ref. 16 and the references therein for point interactions using the
resolvents to discuss the nonrelativistic limit applies here since the results are the same.

Finally, let us point out the fadiso far implici that the Hamiltonians perturbed by singular
dand '’ interactions are in fact local interactions both in nonrelativistic and relativistic mechan-
ics. This gives us some additional information on the domains of the radial extended Hamilto-
nians.

Using the resolvent equation, the proof is easy. Bhand &’ -sphere interactions in nonrel-
ativistic quantum mechanics are treated in Refs. 1, 17. For the relativistic case, we restrict our
study with an explicit proof to thé and &' -sphere models using the boundary conditions of the
second type, by stating the following Theorem.

Theorem IV.1: For #; o(k,r) belonging toD(hj, ,) which is the domain of the free radial
Dirac Hamiltonian, the domaiﬂ)(hj,,ﬂ“) of the extended radial operator consists of spinors of

the type

10
Ir//jl,le(k!r):'7[/j|,0(k1r)+K(k!R)(0 1)(Dj|(k,r,R), (41)

with

_ (BlolFP (kR +A]
1- (B lIoFP (KRG (k,R)’

K(k,R) 4.2
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R ~ ~
A =G (k',R)f [FPK ) =FP(k 1) IFP K r)dr’
0

+F}|°)'(k',R)JR[é},‘”(k’,r’)—G}f’kk’,r’)](”;},‘”(k’,r’)dr’, (4.3

FO kNG (kR +FP (kRGP (k,r)
cDjl(kuraR): ( ) (0)’ (o)’ (0) ’ (44)

Pk NG (kR +F (K, R)G P(k,r)

kzep(h”’ﬁ”), p(-) is the resolvent set
Furthermore, the decomposition (4.1) is unique and we are allowed to write
(i1 g, =K "y g (KE) = (hyp o= K2 1 o(K,T). (4.9
in.8; J|v.3j| ! jl,o jl,0l%s

Besides, if z/;“,ﬁ“(k,r) eD(h”ﬁ”) and 1/1““3“:0 in an open subset 0f0,~), then
hjl,ﬁﬂ'ﬁjl,ﬁﬂ =0 in this subset

Proof: One may follow step by step Ref. 8, where a similar result has been obtained for point
interactions. However, using the resolvent equation we can show(4dyvis obtained.
We know that

(hji.o— k™1 L2((02))®C2=D(h; o),

(hji g, —K) ™% L2((0)® C2=D(hy 5 )

and
D(hji, )= (hji g, =k*) ~*(hj o= kA D(hj o). (4.6)
Then for
(0)( )
i o(K,T)= (F(o)(k ))ED(hjl,o)y
we have

‘r/fjl,,le(k-r):(hjl,ﬁjl_kz)il(hjl,o_kz)‘//jl,o(kyr); it g, (Kr) e D(hy g, ). 4.7
Inserting the resolvent equatid8.1) into (4.7), we obtain

FO(k, K 0)[F® OF OF (0
( r)) ( )(F (k)G (k,R)+F (kRGP (K ) s

il g (K, +

Vi or)= (F(")(k r 9k, G (K, R)+F<°> (KRB (k1)
The implementation of the boundary conditiai2s61) gives the value of the coefficieit. Thus
(4.2 results. [

Turning to thed’-sphere case and usi8.33, the elements of the first family of s.a.e. satisfy
the following decomposition:

- 1 0
lr/jj|,’éj|(klr):l;bjl,o(klr)—'_K(k!R)(o 1)(Dj|(k!r1R)1 (49)

with
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- -2 F'(k,R)+A
R(kR)= —— (Bii [O)[F{P (K,R)+A] 410
2+ (B 10[FP (kRGP (k,R)+F P (kRGP (K, R

G (K, R)f [FPK ) =FP (k1) IFP (k' r)dr’
+|:§|°>'(k’,R)fR [GP(k' 1) =GP (k1) IGP (k' ,r)dr, (4.11)

FO kNG (kR +FP (kRGP (k,r)

D, (k,r,R)= , ~
itkrR) FOK NG (kR +FP (kRGP (K, )

(4.12

kzep(h“,;“). (4.9 is also unique and ifzpj,,;“el)(h“,;jl) and zp“,;;“:O in an open set
OC(0,»), thenh”,g“wj,,;;“:O in © which means that thé’-sphere interaction is a local inter-
action in relativistic quantum mechanics.
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exponents of ¢*-theory in three dimensions
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We develop an efficient algorithm for evaluating divergent perturbation expansions
of field theories in the bare coupling constayy for which we possess a finite
numberL of expansion coefficients plus two more information: the knowledge of
the large-order behavior proportional te- ¢)k! kﬁg'é, with a known growth pa-
rametera, and the knowledge of the approach to scaling of the type’/gg,

with constants,c’ and a critical exponent of approagh The latter information
leads to an increase in the speed of convergence and a high accuracy of the results.
The algorithm is applied to the six- and seven-loop expansions for the critical
exponents oD (N)-symmetric¢*-theories, and the result for the critical exponent

a is compared with a recent satellite experiment. 26801 American Institute of
Physics. [DOI: 10.1063/1.1289377

I. INTRODUCTION

The field-theoretic approach to critical phenomena provides us with power series expansions
for the critical exponents of a wide variety of universality classes. Fbtheories withO(N)
symmetry in three dimensions, these expansions have been calculated numerically as power series
in the renormalized coupling constant up to seven loopstfar critical exponents and 7 and up
to six loops for the exponenb governing the approach to scaling. Ineddimensions, exact
e-expansions are available up to five loops for all critical exponents @{k) symmetry? cubic
symmetry, and mixtures of thed&Vhen inserted into the renormalization group equations, these
expansions are supposed to determine the critical exponents via their values at an infrared-stable
fixed pointg=g*. The latter step is nontrivial since the expansions are divergent and require
resummation, for which sophisticated methods have been developed, summarized and applied
most recently in Ref. 4. The resummation methods use the information from the known large-
order behavior € a) k! kﬁg‘,‘3 of the expansions and analytic mapping techniques to obtain quite
accurate results.

A completely different resummation procedure was developed recently on the basis of varia-
tional perturbation theoRto the expansions in powers of thare coupling constantvhich goes
to infinity at the critical point. The resultingtrong-coupling theowas successfully applied in
threé® and 4- e dimensions® and rendered for the first time an interpolation between expansions
of 4—e and 2+ e-dimensional theories. This method converges as fast as the previous ones, even
though it does not take into account the information on the large-order behavior of the expansions.
Instead, it uses the fact that the power series for the critical exponents approach their constant
critical value in the fornt+c'/gg, wherec,c’ are constants, and is the critical exponent of the
approach to scaling. The results show that the latter information is just as efficient in increasing
the speed of convergence as the information on the large-order behavior.

We may therefore expect that a resummation method which incorporates both informations
should lead to results with an even higher accuracy, and it is the purpose of this paper to present
such a method in the form of a simple algorithm.

@Electronic mail: jasch@physik.fu-berlin-de
BElectronic mail: kleinert@physik.fu-berlin.de; URL: http//www.physik.fu-berlin®ddginert

0022-2488/2001/42(1)/52/22/$18.00 52 © 2001 American Institute of Physics
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II. STRONG-COUPLING

The development of our resummation algorithm is based on an improvement of the problem
formulated in Refs. 6 and 7 and solved via variational perturbation thebtgthematically, the
problem we want to solve is the following: Let

L
fL<gB>=k§0 f gk (1)

be the firstL terms of a divergent asymptotic expansion

f(gB)=k§0 f.98 (2)

of a functionf(gg), which possesses a strong-coupling expansion of the type

f(gB>=g§g0 begs &)

which is assumed to have some finite convergence rddils=gg™"". Suppose that the function
is analytic in the complexgg-plane with a cut along the negative real axis, with a discontinuity
known from instanton calculatiohs'?to have near the tip of the cut the generic form

discf(—gg)=2mi y (a|gg|) # te telol, (4)

Via a dispersion relation,

B , discf( gB)
(09 5 | 905 7 oo ®

or a sufficiently subtracted version of it, this discontinuity corresponds to the large-order behavior
of the expansion coefficient

k— o0

fr = Yk (—a)*kP[ 1+ O(1k)]. (6)

The constanty is given by the inverse action of the radially symmetric solution to the classical
field equations. The parametgrcounts the number of zero modes in the fluctuation determinant
around this solution. The absolute normalizatipof the large-order behavior requires the calcu-
lation of the fluctuation determinaft.

As far as the leading strong-coupling coefficidmt is concerned, this problem has been
attacked before by ParfSiusing a resummation method based on Borel transformations in com-
bination with analytic mapping techniques. However, when applied to the asymptotic expansions
of the ground state energy of the anharmonic oscillator, his method converges very slowly, too
slow to lead to reliable critical exponents, where only five to seven expansion coeffi€jents
known. The reason is that in Parisi’s approach, the corrections to the leading power behavior fail
to match the true irrational powers of the strong-coupling expan@pn

This deficiency was cured by the strong-coupling theory of one of the autHdfs) in Ref.

6, and the subsequent application to critical exponents in Refs. 8, 9, and 10, which showed a
surprisingly rapid convergence. However, that theory did not take advantage of the knowledge of
the large-order behavidb), which can lead to an increase in the speed of convergence and thus
of the accuracy of theoretical values for the critical exponents. This will be achieved in the present
improved resummation method.
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Ill. BOREL METHODS

Basis for this method is the development of a more general Borel-type transformation which
will automatically guarantee the form of the strong-coupling expan&@pifor each approximant
fL(gg). Let us first recall briefly the important properties of an ordinary Borel transformation: it
is a functionB(t) associated witf(gg) which is defined by the Taylor series

oo

- f
B(t)=k§=‘,O B tk=> k—!ktk. (7

k=0

By dividing the expansion coefficienfg by k!, the factorial growth off, is reduced to a power
growth, thus givingB(t) a finite convergence radius.
An alternative definition of the Borel transform is given by the contour integral

1 dz |
B(t)=m i?e f(t/z), (8)

where the contouC encloses anticlockwise the negative real axis. Indeed, inseftihngnd
performing the integral we obtaifY).
If f(gg) is an analytic function in the sector

Sro+ 5=198l 98| <R.|arg g)| < m/2+ 5} )
of a circle, and satisfies the so-called strong asymptotic condition
‘ L

f(gB>—k§O f gk

<Ags tatTHL+1)!  with a,A>0, (10)

then B(t) is analytic inS}, with a finite radius of convergende<1/a. The original function
f(gg) can be recovered froB(t) by the inverse Borel transformation

f(gg) = f:e*B(thmt. (11)

Obviously, the inverse transformation can only be performe8(if) is known on the entire
positive realt-axis. The Taylor serie&7) for B(t), however, converges only inside the circle of
radius 1k. Before we can do the integral {i1), we must therefore perform a suitable analytic
continuation of(7).1* This can be done by re-expandif&(t) in powers of the function(t)
defined implicitly by

1 K(t)

== (12

o [1-x()]P
This function maps the intervf0,~ ] of thet-axis to the interval0,1] of the x-plane. By a proper
choice of o it is possible to make the unit circle free of singularities. Then we may use the
re-expansiorB(t) in powers ofx(t) truncated aftei",

L
BL<t>Ek§o virk(t), (13)

as an approximation t®, (t) on the entire positive redl axis. Inserting this into the inverse
transformation formuld11), we obtain an approximatioff(gg) for f(gg), which has the same
first L expansion coefficients ds (gg) and, in addition, the correct large-order behav#@):
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How can we incorporate the strong-coupling expansg®nof f(gg) into the approximation
f2(gg)? In the Borel transfornB(t), the strong-coupling expansiai3) amounts to a large-
expansion

“ sinm(ko—s)

B(t)=tsk20 S ['(ko—S)b,t %, (14)

v

This follows directly by inserting3) into (8) and integrating each term. Here and in the sedDel,
denotes a path of integration which encloses anticlockwise the negative real axis in the complex
plane.

If the serieq3) has a finite radius of convergence, the latgegpansion oB(t) is a divergent
asymptotic one, because of the faclikw —s) in the kth expansion coefficient.

It should be stressed, that the relation between the coefficients of the strong-coupling expan-
sion (3) and the coefficients of expansigh4) is not generally invertible, because of the factor
sinm(kw—s) which causes the coefficients of negative integer powetst@fvanish.

Note that, in general, an expansion in the Borel-plane with a power sequenas in(14) is
not sufficient to ensure an expansion in the same powers iggfmane as in3), because of the
appearance of extra integer powers dgg. This is illustrated by the simple functioB(t)
=(1+1)S, which possesses a strong-coupling expansion in the paWefslf s is noninteger the
expansion of the corresponding functibfyg) reads

oo

- SR
— —t s_ allg s 1/g k=1
f(9s) fo dte”(1+ggt)*=e!el(st 1)gp et X, G g (19

and expanding the exponential we see that the sum contains integer powers which are not con-
tained in the strong-coupling expansion&ift).

It is advantageous to perform a further analytic continuation of the re-expafis3pmvhich
enforces automatically the leading power behavfoof B(t). For this we changél3) to

L
BL<t)E[1—K<t>]-psk§O hiek (). (16)

The coefficientd, are determined by using2) to expandk(t) in powers oft, inserting this into
(16), re-expanding in powers o¢f and comparing the final coefficients with thos&7n When the
approximation(16) is inserted intq11), we obtainf?(gg) with the correct leading power behavior
gg for largegg .

Unfortunately, the simple prefactor does not produce the correct subleading poglrs<¢
of the strong-coupling expansiaB), and we have not been able to find another simple analytic
continuation ofB(t) which would achieve this.

IV. HYPER-BOREL TRANSFORMATION

A solution of this problem is, however, possible with the help of a generalization of the
Borel—Leroy transformation to what we shall calhgper-Borel transformatiort

E(y)=k20 BuyX, 17)

with coefficients

T'(k(Lw—1)+ Bo)
“T(Ko—slo)(By) X

By= (19
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A. General properties

The inverse transformation is given by the double integral

~ T'(Bo) t— B dey gs |7 [ytd-oVele,
f(gp)= o fﬁcdtet 0 0y BRI ex o B(y), (19

as can easily be shown with the help of the integral representation of the inverse Gamma function

—1 _ ! J'd 'tz 20
F(Z)_ﬁctet . ()

The transformation possesses a free parangjerhich will be used to optimize the approxima-
tion f (gg) at each ordek. The powerw of the strong-coupling expansion is assumed to lie in the
interval 0<w<1, as it does in the upcoming physical applications.

The hyper-Borel transformation has the desired property of allowing for a resummation of
f_(gg) with the full sequence of powers gf in the strong-coupling expansid@8). To show this
we first observe that as in the ordinary Borel transfdity the large-argument behavior of the
gamma function known from Stirling’s formula

k— o0
I(pk+q) = 27! Ppd= Y2 125a-PRpPK(kIP 1+ O(1K)], (21)

removes the factorial growtt6) from the expansion coefficienfg, and leads to a simple power
behavior of the coefficient8,

ko0

By = const[aw(1l— )Y 1|KKkAtFotV2tslor 1 + O(1/k)]. (22

Thus our transfornB(y) shares with the ordinary Borel transforB(t) the property of being
analytic at the origin. Its radius of convergence is determined by the singularity on the negative
real axis at

Ys=— —=—— Ylo—1" 23

B. Resummation procedure

A resummation procedure can now be set up on the basis of the trarR{g)nas before. The
inverse transformatiol9) contains an integral over the entire positive axis, requiring again an

analytic continuation of the Taylor expansion®fy) beyond the convergence radius.

The reason for introducing the transfofg{y) was to allow us to reproduce the complete
power sequence in the strong-coupling expang®)nwith a leading powegg and a subleading
sequence of powergsB_k‘“, k=1,2,3,.... This is achieved by removing a faceor’?” with p,o
>0 from the truncated serigd8) of our transformB(y). Furthermore by removing a second
simple prefactor of the form (toy) ° we weaken the leading singularity in the hyper-Borel
complexy-plane, which determines the large order behar The remaining series has still a
finite radius of convergence. To achieve convergence on the entire poséixis for which we
must do the integra{19), we re-expand the remaining seriesyoin powers ofk(y) which is
related toy by an equation like Eq(12). For simplicity we choose the paramefer 1, i.e.,

1 «(y)

Y= Tx(y)” 29
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which maps a shifted right half of the complgplane with Rgy]= — 1/20 onto the unit circle in
the complexx-plane. Thus we re-expari(y) in the following way:

(ay)¥

aroyts

B(y)= go Ekyk=e-wy[1+oy]-5k§0 thk<y)=e-P°yk§0 hi

The inverse hyper-Borel transform B{y) is now found by forming the integrals of the expansion
functions in(25):

T'(Bo) 35 e (*dy| gs |7 %yt”‘“‘lr’ oy (o)
I = . dt 't BOJ — ex e Py —— 26
n(gB) 271'| c 0 y ytllw—l gB (1+O'y)n+§ ( )
so that the approximant§'(gg) may be written as
L
f(98)= 2, holn(ge). 27)

The same functions,(gg) may be used as basis functions for a wide variety of divergent
truncated perturbation expansiohggg). The complete list of parameters on which they depend
reads as follows:

I,(98) =1n(9s,®,S,p,0,6,B0) =(00s,0,S,p,1,6,B0), (28)

but in the following we shall mostly use the shorter notaligfgg). The integral representation of
I,(gg) breaks down as=n, requiring an analytical continuation. For the upcoming applications
in the largegg regime it will be sufficient to perform this continuation only in the convergent
strong-coupling expansion of(gg). This is obtained by performing a Taylor series expansion of
the exponential function i26), which is an expansion in powers ofgl/. After integrating over

t andy using (20), we obtain an expansion

In(gs)=g§k20 b{ggs ", (29

which has indeed the same power sequence as the strong-coupling exgdhsibthe function
f(gg) to be resummed.
The expansion coefficients are

_ 1)k oS kmF(IBO) -
Kl T[(0—Lk+ Bot (Lw—1)s] (30

wherei{" denotes the integral

i(kn): fo dy e—/Jy(1+y)—5—nykw+n—S—l. (31)

This integral is seen to coincide with the Kummer function

U(a zzL wd e Yy L14y)re-l 32
(’7')r(a)oy ye H(1+y) , (32

in terms of which we can write

iW=T(ko+n-s)U(ko+n—s,ko—s—+1p). (33)
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The latter expression is useful since in some applications the int€gtalmay diverge, and
requires an analytic continuation by deforming the contour of integration. Such deformations are
automatically supplied by choosing other representations for the Kummer function, for instance,

T M(e,y,2) yM(l-i-af—y,Z—y,Z)

— _ 51—
Vlar 2= Gy [Tl a= T () 2 Tl (2—y) | (34)
whereM («,v,z) is the confluent hypergeometric function with a Taylor expansion
az ala—l)2?
M(a,y,2)=1+ (35

PETREE = VTR

The alternative expressiof83) for i(k”), with (34) and (35), is useful for resumming various
asymptotic expansions, for example, that of the ground state energy of the anharmonic oscillator,
in which case the leading strong-coupling powédras the value 1/3. There, the integral represen-
tation (31) would have to be evaluated for values-0,k=0, where the integral does not exist,
whereas formuld33) with (34) and(35) is well defined.

For largek, the integral on the right-hand side (1) can be estimated with the help of the
saddle point approximation. The saddle point lies at

Kw
yS~ 71 (36)

leading to the asymptotic estimate

k= [kw| ~07N (o
if(n) — (7) f dye‘Pyy“’k+“‘5‘1[1+(9(1/k)]
0

(,L)k —06—n ko
:(7) p K ST (Ko +n—s)[1+O(1K)]. (37)

The behavior of the strong-coupling coefficieb{ﬁ) for largek is obtained with the help of the
identity

Izl (1-2)= (39

sinmwz

and Stirling’s formula(21), yielding

w7 { (1)t
b = ysinm{k(w—1)+ B+ (Lw—1)s]| — ——

k
l K"[1+0(1Kk)]. (39
(op)”

The values of the real constanis y,; will not be needed in the upcoming discussions, and are
therefore not calculated explicitly.
Equation(39) shows that the strong-coupling expansi@h has a convergence radius

(pa)®

e “

|gg|=

which means that the basis functionggg), and certainly alsd(gg) itself, possess additional
singularities besidgg=0. The parametep will be optimally adjusted to match the positions of
these singularities.



J. Math. Phys., Vol. 42, No. 1, January 2001 Fast-convergent resummation algorithm and . . . 59

C. Taylor series of basis functions

For re-expandindg | (gg) in terms of the basis functions(gg), we must know their Taylor
series. These are obtained by substituting i(26) the variabley by ggy’, and expanding the
integrand of(26) in powers ofgg. After performing the integrals over’ andt, we find

In(ge)=> fMgk, (42)

k=n

with the coefficients

(42

1 T(By)I'(klw—slw) ko (_5_n) (—p)k—n-i )

) — . —_—0".
K "o T(k(Uo—1)+80) =6\ T | (k=n—j)!

The coefficients in the last sum arise from thiategral:

(=p) " (—Dk
(k—=n—j)!  T(k—n+1)I'(n+6)

(7

j=0

fo dte W L(p+t)k . (43

For largek, the integral may be evaluated with the help of the saddle-point approximation. Using
this and Stirling’s formula21), we find

>

“~=0

KON 1+ O(1/K)]. (44)

k—n _n_5)(_p)k—n—j k:mc (_1)k—nep
]

j (k=n—j)! —  T(8+n)

Inserting this into(42) and using once more Stirling’s formula, we obtain for the expansion
coefficientsf{" the following factorial growth

k—oo (_
fﬁn) — (]')neﬂ 1_w)llzfﬁowﬁofl+s/wk57ﬁo+n73/275/w
N2mI'(6+n)

k
KI[1+O(1Kk)]. (49

w(l_w)llw—l

For an optimal re-expansiof27), we shall choose the free parameters of the basis functions
I,(9g,w,S,p,0,8,By) to match the large-order behavior of the coefficiefitsn (6).

D. Convergence properties of resummed series

We shall now discuss the speed of convergence of the resummation procedure. For this it will
be sufficient to estimate the convergence of the strong-coupling coeffid:ibmfsthe approxima-
tions f| (gg) against the true strong-coupling coefficiehisin (3). The convergence for arbitrary
values ofgg will always be better than that. Such an estimate is possible by looking at the large-
n behavior of the expansion coefficiemg‘) in the strong-coupling expansion bf(gg) in (29).

This is determined by the saddle point approximation to the intéﬁf’aln Eq. (31), which we
rewrite as

i(kn): fo dy e—py—n|n(1+l/y)(1+y)—§ykw—s—l. (46)
The saddle point lies at

ys= \[E [1+O(1Wn)]. 47

At this point, the total exponent in the integrand is
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1
—pys—nln(l-l—y =—2\pn[1+0O(1n)], (49)
S
implying the largen behavior
n—o
b{" = constx nke=s~1= 3= 2PN 14+ O(1/yn)]. (49)

The strong-coupling coefficienbi; of the approximation${(gg) are linear combinations of
the coefficients(" of the basis function$,(gg):

L
bb= Z‘o b{"h,. (50)

The speed of convergence with which lhbs approachby as the numbeL goes to infinity is
governed by the growth with of the re-expansion coefficients, and of the coefficientb(k”) in

Eqg. (49). We shall see that for the series to be resummed, the re-expansion coeffigients
grow at most like some power, implying that the approximatiorts; approach theit. — o -limit

by with an error proportional to

bk_ bk~ Lr+kwfsf 5— 1/2>< e*2\e“p_L_ (51)
The leading exponential falloff of the errefr 2T is independent of the other parameters in the
basis functiond ,(gg,,p,p,0, 8, By) Which still need adjustment. This is the important advan-
tage of the present resummation method with respect to variational perturbation°thetire
the error decreases merely like "% with 1w close to 1/4.

The nonexponential prefactor in Eqg.(51) depends on the parameters in
I,(gg,w,p,p,0,6,B0). Some of them are related to observables, others are free and may be
chosen to optimize the convergence.

1. Parameters s and w

The perturbation expansions for the critical exponents are power series in the bare coupling
constanigg whose strong-coupling limit is a constd@tThe same is true for the series expressing
the renormalized coupling constamin powers of the bare coupling constant. This implies that the
growth parametes for the basis functions,(gg) is equal to zero in all cases. The constant
asymptotic values are approached with the subleading powgﬁ@’f/, wherew is a universal
experimentally measurable critical exponent.

2. Parameter o

In the ordinary Borel transformation, the parameterin the large-order behavior of the
expansion coefficient$, in Eq. (6), which is determined directly by the inverse value of the
reduced action of the classical solution to the field equations, specifies also the position of the
singularity on the negativeaxis in B(t). In our transformB(y), the singularity position of the
singularity is proportional tar, with an w-dependent prefactor. It lies fgee Eq(23)]

c=aw(l—w) 1 (52

This value ofo ensures that the expansion coefficieift®f the basis functionk,(gg) in Eq. (45)

grow for largek with the same factor+ a)* as the expansion coefficients fbfgg) in Eq. (6).
The conformal mapping24) maps the singularity at=—1/o to k=, and converts the cut

along the negative into a cut in theplane from 1 toe. The growth of the re-expansion coeffi-

cientsh,, with n is therefore determined by the nature of the singularit6f) at .
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In the upcoming applications to critical exponents it will turn out that the véB@gefollowing
from the inverse action of the solution to the classical field equationscamdll not yield the
fastest convergence of the approximatiéhéyg) towardsf(gg), but that a slightly smaller value
gives better results. This seems to be due to the fact that the classical solution gives only the
nearest singularity in the hyper-Borel transfoBtly) of f(gg). In reality, there are many addi-
tional cuts from other fluctuating field configurations which determine the size of the expansion
coefficientsf, at pre-asymptotic ordefs Since the few knowrf,’s are always pre-asymptotic,
they are best accounted for by an effective shift of the position of the singularity into the direction
of the additional cuts at larger negatiyecorresponding to a smaller.

3. Parameter p

According to Eq.(40), the parametep determines the radius of convergence of the strong-
coupling expansion of the basis functionggg). It should therefore be adjusted to fit optimally
the corresponding radius of the original functibfgg). Since we do not know this radius, this
adjustment will be done phenomenologically by varymtp optimize the speed of convergence.
Specifically, we shall search at each ortidor a vanishing highest re-expansion coefficieptor,
if it does not vanish anywhere, for a vanishing derivative with respept to

h (p)=0 or d =0. (53

4. Parameter 6

From Eq.(45) we see that the paramet&influences the powet? in the large-order behavior
(6). By comparing the two equations, we identify the growth paramgtef | ,(gg) as being

B=056—By—3/2—slw+n. (54

At first it appears to be impossible to giedl basis functions (gg) the same growth power
[ in (45) by simply lettings depend on the orderas required by54). If we were to do this, we
would have to assign té the value

8= 6,=B+ Bo+3/2+slw—n, (55

which depends on the indexof the functionl ,(gg), and this means that we perform an analytical
continuation of the power series expansiorBgf/) by re-expanding it as follows:

B(y) =k§0 Byf=er7V(1+ oy>-5k§o h(oy)k. (56)

But the series in this formula which is obtained from the serieB(f) by removing a simple

factor still has the same finite radius of convergence and could not be used to e&iiypfer
large values ofy needed to perform the back transfo(@®). It is, however, possible to sidetrack
this problem by lettingo grow linearly with the ordelL. Then the exponential factor ¢66)
suppresses the integrals owefor largey sufficiently to make the divergence of the re-expanded
series(56) at largey irrelevant. If we determing from the condition(53), the growth ofp with

L turns out to emerge by itself.

5. Parameter B,
The parametep, has two effects. From E¢30) we see that for

_ Bot+ (Llw—1)s

K>k, T

(57)
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the signs of the strong-coupling expansion coefficients start to alternate irregularly. This irregu-
larity weakens the convergence of the higher strong-coupling coeffid;égm\ﬂth k>k, against
b, . The convergence can therefore be improved by choosjggwhich grows proportionally to
the orderL of the approximation.

In addition, B, appears in the power & in (45), which is a consequence of the fact that it
determines the nature of the cut B(y) in the complexy-plane starting ay=—1/o [see Eq.
(29)].

If we expand both sides @B5) in powers ofk=oy/(1+ oy) and compare the coefficients of
powers ofk, it is easy to write down an explicit formula for the re-expansion coefficibpts
terms of the coefficient8; of B(y) by

n k =

BO’ p o+n—1

=3, 3 B e,
k=0

j=0 _J)' 59

whereEj are obtained from the original expansion coefficieljit®f f(gg) by relation(18).

Before beginning with the resummation of the perturbation expansions for the critical expo-
nents of ¢*-field theories, it will be useful to obtain a feeling for the quality of the above-
developed resummation procedure, in particular for the significance of the parameters upon the
speed of convergence. We do this by resumming the often-used example of an asymptotic series,
the perturbation expansion of the ground state energy of the anharmonic oscillator.

E. Resummation of ground state energy of anharmonic oscillator
Consider the one-dimensional anharmonic oscillator with the Hamiltonian

2 2
_P X 4
H—2+m 2+ng. (59

In this quantum mechanical system, there is no need to distinguish bare and renormalized coupling
constants, but since the previous resummation formulas were all formulated in teggswaf
shall keep this notation also here. The ground state energy has a perturbation expansion

E<°><gB>=; f g8, (60)

whose coefficients can be calculated via the Bender—Wu recursion réfatoarbitrarily high
orders, with a large-order behavior

fo=— \@k!(—s)kklﬂ[lﬂf)(l/k)]. (61)
aa

By comparison with(6) we identify the growth parameters
a=3, B=-1/2. (62

A scale transformation— g*®x applied to the Hamiltoniafb9) reveals the scaling propetfyfor
the energy as a function @f; andm?:

E(m?,0g) =08 E(gs *m?,1). (63)

Combining this with the knowleddéthat E(m?,1) is an analytic function an?=0, we see that
E(1,g5) possesses a power series expansion of the {8ynwith the parameters

s=1/3, w=2/3. (64)
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Inserting the latter number together withfrom Eq. (62) into (52), we identify
o=—. (65)

The ground state enerds ®)(gg) obeys a once-subtracted dispersion relation:

1 =dgg ImE©)(—gL.
E(o)(gs)=§+%j dge IMET(~g8)

A (66
mJo g Ogt0Us

The perturbation expansidfO0) is obtained from this by expanding @{+gg) in powers ofgz,

and performing the integral term by term. This shows explicitly that the large-order beli@tjor

is caused by an imaginary part

6 |/ 1
|m E(O)(_|gB|): \/; 3|gB|e_1/3|gB|[1+O(|gB|)] (67)

near the tip of the left-hand cut in the complex-plane, in agreement with the general fo(B)
associated with the large-order behawiéy.

Let us now specify the parametér We shall do this here in anrdependent way using Eq.
(55), which now reads with{64):

5= 8,=PBo+3/2—n. (68)
The corresponding basis functions
| n(9s,2/3,1/3p,21\[3, B0+ 3/12— 1, By), (69)

have then all the same large-order growth paramgtar (6).

The two parameters and B, are still arbitrary. The first is determined by an order-dependent
optimization of the approximations via the conditioi®8). The best choice o8, will be made
differently depending on the regions of .

Let us test the convergence of our algorithm at small negative coupling congtanis.,
near the tip of the left-hand cut in the complgx-plane. We do this by calculating the prefactor
v in the large-order behavi@b). In this case the convergence turns out to be fastest by giving the
paramete3, a small value, i.e.3,=2. With the large-order behavié45) of the basis functions
I,(gr), we find the resummed functiorig(gg) of Lth orderEhzohnln(gB) to have a large-order
behavior(6) with a prefactor

L

_&TB) 5
S go( 1)%hy. (70)

The values of these sums for increaslngre shown in Fig. 1. They converge exponentially

fast against the exact limiting value
6
Y=\ = (71
T

with superimposed oscillations. The oscillations are of the same kind as those observed in varia-
tional perturbation theory for the convergence of the approximations to the strong-coupling coef-
ficients b, (see Figs. 5.19 and 5.20 in Ref) Blso here, the strong-coupling coefficiertb#
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FIG. 1. Logarithmic plot of the convergence behavior of the successive approximations to the prgfaatdne large-
order behavioK87), and of the leading strong-coupling coefficiés.

converge exponentially fast towarlg, but with a larger power of in the exponent of the last

term ~e~°"s¥\L [see Eq(51)], rather than~ e~ tor variational perturbation theofysee
Eqg. (5.199 in Ref. 5. This is seen on the right-hand side of Fig. 1.

We have applied our resummation method to the first 10 strong-coupling coefficients using
the expansion coefficienfg up to order 70. The results are shown in Table I. Comparison with a
similar table in Refs. 18 and 5 shows that the new resummation method yields in 70th order the
same accuracy as variational perturbation theory did in 251st order. In all cases the optimal
parametelp turns out to be a slowly growing function with

In the strong-coupling regime, the convergence is fastest by choosing}, fan L-dependent
value

Bo=L. (72

Note that this choice 0f3, ruins the convergence to the imaginary part for small negaiiye
which was resummed best wiBy,= 2.

F. Resummation of critical exponents

Having convinced ourselves of the fast convergence of our new resummation method, let us
now turn to the perturbation expansions of BEN)-symmetricg* theories in powers of the bare

coupling constanEB, defined by the Euclidean action

TABLE |. Strong-coupling coefficienty, of the 70th order approximants
Ego(g)=2,7,‘iohnln(g) to the ground state enerds’(g) of the anharmonic
oscillator. They have the same accuracy as the variational perturbation—
theoretic calculations up to order 251 in Refs. 18 and 5.

=}

by

0.667 986 259 155 777 108 270 962 02
0.143 668 783 380 864 910 020 319
0.008 627 565 680 802 279 127 963
0.000 818 208 905 756 349 542 41
0.000 082 429 217 130077 21991
0.000 008 069 494 235 040 964 75
0.000 000 727 977 005 945 772 63
0.000 000 056 145997 222 351 17
0.000 000 002 949 562 732 709 36
0.000 000 000 064 215 331 956 97
0.000 000 000 048 214 263 789 07

©CoOoO~NOOA~WNEFEO

-
o
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A= f dPx{ 3] dpo(X) 12+ 3mpb5(X) + 2N gl b5(x) 1%} (73

in D=3 dimensions. The fields, is an N-component vectokbo= (g, b5, - . . ,4y), and the
action isO(N)-symmetric. We define renormalized massand field strength by parametrizing the
behavior of the connected two point functi@? in momentum space near zero momentum as

R . . — (74)
B * m2+ p2+ O(p?)

The renormalized coupling constamis defined by the value of the connected four-point function
at zero momenta:

G*)(0,a;0,8;0,7;0,8) =M™ *"PZZ 9(8,58,5F SuySps+ 8asds,)- (75)

If we introduce the dimensionless bare coupling constgt \g/m, the critical exponents are
defined by

d
ﬂ(gB)ZQBd_nggZ¢,

(76)
2

d m
2—v(gg) 1=gp—log—.
dgg “m?

The following expansions for the critical indices in the bare dimensionless coupling constant are

availablé® in the literature for allO(N):

7(9s) = (16/27+ 8N/27)g3+ (—9.086 537 459-5.679 085 91R — 0.567 908 591 R?)g3
+(127.491 6153 94.773 205 34 + 17.134 775 5%+ 0.810 538 322 M%) gy,
+(—1843.491 99 1576.466 78l — 395.267 835 812— 36.006 602 4R/
—1.026 437 8481*) g3+ (28 108.603 98 26 995.879 6 + 8461.481 80BI2
+1116.246 86B° +62.887 906 81+ 1.218 861 53R°)gg, (77

2— v }(gg) =0g(2+N)+(523/27+ 316N/27+ N?) g3+ (229.374 4544 162.847 423
+26.080 098 08I+ N®)g3+ (— 309 099 6037 2520.848 75M
—572.328 289R12— 44.326 461 4M°— N*)gg + (45 970.718 39
+42170.327 0N+ 12 152.706 781>+ 1408.064 00BI®+ 65.976 301 0B*+ N°)g3
+(—740843.1985 751 333.068 — 258 945.003K2— 39 575.570 3K
—2842.89661*—90.714 558R1°— N®) g8, (79

In addition, seventh order coefficients have been calculatetl f00,1,2,3*
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—45387.4892 —12792269.77 N=0
—114574.4876 —33711416.97 N=1

7= gL, v 1= g4 for (79
—2410424.7646 78’ —73780809.849 B N=2
—454761.4731 —143831857.0 N=3

When approaching the critical point, the renormalized nmsgsnds to zero, so that the problem
is to find the strong-coupling limit of these expansions. In order to have the critical exponents
approach a constant value, the powen Eq. (3) must be set equal to zero.

In contrast to the quantum-mechanical discussion in the last section, the expogewérn-
ing the approach to the scaling limit is now unknown, and must also be determined from the
available perturbation expansions. As in Refs. 8 and 9, we solve this problem by using the fact that
the existence of a critical point implies the renormalized coupling congtampowers ofgg to
converge against a constant renormalized coupfjiigfor m—0. The expansion ofj(gg) is
known up to six loop¥ for all O(N):

9(gs) =g+ (—8—N)g3+(2108/27 514/2N+N?)g3
+(—878.7937193 312.634 446 71— 32.548 413 0B?>— N3)gg
+(11068.061 83 5100.403 286+ 786.366 569 B>+ 48.213 867 4M°+ N*)g3
+(—153102.850 23 85611.919 98— 17 317.70261°— 1585.114 188I°
—65.820 362 0B*— N°)g$
+(2297 647.148 149 5703.31B + 371 103.08981°+ 44 914.04 8 1R 3
+2797.291 57814+ 85.213 105 OM°+ N6) g, (80)

The convergence against a fixed coupligty occurs only for the correct value ab in the
resummation functiond ,(gg,w,S,p,0,6,80). At different values,g(gg) has some strong-
coupling power behaviogg with s#0. We may therefore determine by forming from (80) a
series for the powes,

dlogg(gs) s
= =" y 81

resumming this for various values afin the basis functions, and finding the critical exponent
from the zero ofs. Alternatively, sinceg(gg)—g*, we can just as well resum the series for
—gs, which coincides with the3-function of renormalization group theofyot to be confused
with the growth parametes in (6)]

_dg(ge)
B(gs)=—0s dgs (82
If we denote its strong-coupling limit bg*,
B*=B(9s)l g, (83)

we resum the expansion f@(gg) to form the approximations

L
BL<gB>=n§O haln(gg,®), (84)
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FIG. 2. Convergence of strong-coupling limits of tBefunction (82) for N=1 and different values af. The upper and
lower dashed lines denote the range of the « limit of B from which the value ofv is deduced in Fig. 3.

and plot the strong-coupling limits of tHeth approximationgs;® for various values of». This is
shown in Fig. 2. From these plots we extract the critical expoaeby finding thew-value for
which the approximationg] extrapolate best to zero fdr—~, taking into account that the
convergence is exponentially fast with superimposed oscillations. Thasdues are called, .

For these resummations, we must of course specify the remaining parameters in the basis
functionsl! ,(gg ,®,0,0,0,8,80). This can, in principle, proceed as in the case of the anharmonic
oscillator. The parameter is determined from the action of a classical instanton solugigfx)
of the field equations, and has for all expansionsNkiedependent valué

327
a=|—=1.329 97, (85)
4

wherel pEIde[ d.(X)]P are integrals over powers @f;(x).

To determine the parameté; we recall the remaining growth parametgtsand y of the
large-order behavidi6) of the perturbative series for the critical exponents. The growth parameter
B is given by the number of zero modes in the fluctuation spectrum around this classical solution:
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TABLE IlI. First six perturbative coefficients in the expansions of the
B-function in powers of the bare coupling constapt, divided by their
asymptotic large-order estimates- &)*k!k”s. The ratios increase quite
slowly towards the theoretically predicted normalization consggnin the
asymptotic regime given in the lowest row.

N 0 1 2 3
k fEIfges feIges fEIges fEIfges
2 0.57 0.45 0.35 0.27
3 0.61 0.45 0.32 0.22
4 0.73 0.51 0.34 0.22
5 0.89 0.61 0.40 0.25
6 1.07 073 0.47 0.29
7 1.26 0.88 0.56 0.34
Vs 110.0 97.0 755 53.2
B, 3+N/2
B,-1t ={ 4+N/2} . (86)
Bs 44N/2

The prefactorgy in (6) requires the calculation of the fluctuation determinants around the classical
solution, which yields in the case of thgfunction

2N/2+2373/27T72

VBT T T(NI2+2)

I% 2 |6 3/2
E) (E_l) DE1/2D-F(N_1)/2, (87)

where D, and Dt are characteristic quantities of the longitudinal and transverse parts of the
fluctuation determinant, respectively. Their numerical valueStare

10.544+ 0.004 1.4571+ 0.0001 31.691522 75.589 005 659.868 352 13.563312

(88)
The parametery,,, y,-1 are obtained fromy, by
2H4 N+2 Iy
V7= V6] D(4-D)’ J’V—1=7’BN—+8(D—1)4TFI—2, (89

1

wherel,=(1—-D/4)l, andH; is listed in(88). Note that the expansions in powers of the renor-
malized coupling constarg have the same parametarsand 8, but different parametersy.
These differ from the above’s by a common factor:

YR= ,ye*(N+8)/a. (90)

From Eq.(85), the parameteo is found using relatior{52). It turns out, however, that this
value does not lead to an optimal convergence. This can be understood qualitatively by observing
that the large-order behavior of the expansion coefficients of the critical exponents and of the
B-function in powers of the bare coupling constggtis not nearly as precocious in reaching the
large-order form(6) as the corresponding expansions in powers of the renormalized coupling
constantg (see Fig. 1 in Ref. P The lack of precocity here is illustrated for the expansion
coefficientsff of the B-function in Table Il, which gives the ratios dff and their leading
asymptotic estimategf @
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FIG. 3. Plot of resummed values gf againstw. The true value ob is deduced from the conditigf* =0 and the errors
are determined from the range efwhere the error bars from the resummationgdf intersect with thex-axis.

fEITE =1L /K1 (— a) KA. (91)

The first six approach their large-order limits quite slowly. For this reason we prefer to adapt

from « by Eq. (52), but by an optimization of the convergence. Since the re-expanded series
converges for fixed values @& ando it is reasonable to determine these parameters by searching
for a point of least dependence in largest available okddrhis is done by imposing the condi-
tions

—=0 and =0 (92
g

to determineboth parameters, o, wherek, denotes thé th approximation to any exponemt v
or 7. In accordance with the discussions in Sec. Il A 2 this procedure provides a valuglath
is smaller than that given b§f2).

After trying out a few choices, we have given the paramegeedp the fixed values 1 and
10, respectively, to accelerate the convergence.

The results for the critical exponents of &l(N)-symmetries are shown in Figs. 2—6 and
Table III.

The total error is indicated in the square brackets. It is deduced from the error of resummation
of the critical exponent at a fixed value efindicated in the parentheses, and from the efrar
of w, using the derivative of the exponent with respecabtgiven in curly brackets. Symbolically,
the relation between these errors is

[ ]=()+Aw{-}. (93

The accuracy of our results can be judged by comparison with the most accurately measured
critical exponentw parametrizing the divergence of the specific heat of superfluid helium at the
\-transition by|T.— T| ™. By going into a vicinity of the critical temperature withT~10"8 K,

a recent satellite experiment has provided us with the ¢alue
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TABLE III. Critical exponents of theD(N)-symmetric ¢*-theory from our new resummation method. The numbers in
square brackets indicate the total errors. They arise from the error of the resummation at fixed valuesiocéted in
parentheses, and the errors coming from the inaccurate knowledgeTdie former are estimated from the scattering of
the approximants around the graphically determined lar§jmit, the latter follow from the errors im and the derivatives

of the critical exponents with respect to changesoahdicated in the curly brackets.

N y n v ®
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FIG. 7. Comparison of our resul®6) for critical exponentsy of superfluid helium with experiments and other theories.
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and yields via the scaling relation=2—3v:
a=-—0.0112:0.0021, (96)

in good agreement with the experimental numig2h). A comparison with other experiments and
theories is shown in Fig. 7, showing that our result is among the more accurate ones.

A remark is necessary concerning the errors quoted in this paper. We do not know how to
estimate precisely the errors which can appear in an involved numerical approximation scheme
such as the one presented here. Our estimates are based on the range of critical exponents which
can be reached by reasonably modifying the parameters in the calculations. What may be consid-
ered as reasonable is a somewhat subjective procedure. As such, our error estimates follow the
rule of maximal optimism, and are probably underestimated. This is, however, not uncommon in
resummations of divergent power series of critical exponénts.
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In this letter we construct a representation of thel3dimensional Poincargroup

by modular groups of von Neumann algebras lying in a specified modular position
with respect to each other. Combining this new result with an old one of
Bisognano—WichmanifJ. Math. Phys16, 985 (1975] we obtain a net of local
observables of a-81-dimensional quantum field theory out of a finite set of alge-
bras. © 2001 American Institute of Physic§DOI: 10.1063/1.1327597

I. INTRODUCTION

In this article we continue our investigation on classifying quantum field theories by a finite
set of algebras lying in a specified modular position relative to each other, see Ref. 1.

Our framework will be the algebraic approach to quantum field theory, in which the physical
system is described by a net of bounded operators, see Ref. 2. As a fundamental feature we have
the Reeh—Schlieder property of the vacutirmtuitively speaking this property reflects the
vacuum fluctuations of local quantum field theories. Mathematically it enables one to apply the
modular theory of operator algebras as developed by Tomita and Takesakich local algebra.

As has been realized by Bisognano and Wichmiathis rather general structure has a very
beautiful interpretation in terms of space—time symmetries of the underlying quantum field theory.
We will subsequently review some of these results in Sec. Il.

In 1992 BorcherSgave an abstract version of this observation which motivated one of the
authors(Wiesbrock to investigate a special type of inclusions of algebras, so called modular
inclusions’

They show a rich symmetry structure. Out of such inclusions he constructed a net of algebras
fulfilling the assumptions of algebraic quantum field theory if 1 dimension$.

In order to generalize this result to higher dimensions he introduced the notion of modular
intersections of von Neumann algebPaStarting with a set of 3 modular intersections and one
additional modular inclusion he constructed a representation of the Pomrcane in 2+1 dimen-
sions. Exploiting the result of Ref. 5 these data give rise totd-#Bimensional quantum field
theory?!

In this article we will generalize this result tot3 dimensions.

II. PRELIMINARIES

For the convenience of the reader we recall the notion of modular inclusion and modular
intersection.

Definition 1 (Ref. 7):

(@ Let NCM be von Neumann algebras acting on a Hilbert spicand letQeH be a
common cyclic and separating vect@NCM,()) is called a*+ half-sided modular inclusion
(abbreviated bythsm), if AL NA {'C N for all =t>0.

¥Electronic mail: kaehler@physik.fu-berlin.de
Electronic mail: wiesbroc@physik.fu-berlin.de

0022-2488/2001/42(1)/74/13/$18.00 74 © 2001 American Institute of Physics
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(b) Let A/ and M be von Neumann algebras acting on a Hilbert spAgevhich have a
common cyclic and separating vectQre H. In addition letQ also be cyclic forNNM. If

l. (WMOM)CWN,Q) and (MNM)CM,Q) are =hsm inclusions,

Il I(s—1lim_ . ARA L) I=s—lim_ .. AT A", then the triple N, M, Q) is called a*=
modular intersection (abbreviated by+mi).

The fundamental Theorem in this context is:

Theorem 1(Ref. D: Let NV'and M fulfill one of the conditions (a) or (b) in Definition 1. Then

(@) In(A,) —In(A ) is essentially self-adjoint (for modular inclusions even positive).

Denote by U,.{(a),aesR the unitary group on H with the generator
F(1/2m)(In(Ar) —In(A ). Then, _

(b) AUy @A =AW (@) A =U \ (e"2™a) for t,acR,

) Uy Ma)Iy=d\UyM@)dy=U yr(—a) forallaeR,

(d) A MA ' C M for all Ft>0,

() N=U y M1)MU  (—1),

(f) AIJIMAX/”:UM]N(—].-FeiZﬂ),

@) Indp=Ur(—2),

(h) (M, M, Q) is =mi (hsm< (N .M’ Q) is Fmi(hsm),

(i) U (@) =Uyr(a) forallaeR.

(There was an error in the original proof of statem@nfor the case of hsm-inclusions, which
was noticed by Araki and Zsido. They also provided a way of filling the '§dfor an alternate
proof, see Ref. 111t is convenient to sign the various algebras occurring in the following by two
integers, f. e. byM,. (This notation is closely related to the labeling of wedge regions by two
light vectors, see Sec. I)l.FurtherA;, and J;, will denote the modular objects belonging to
(M1,,Q) andU 4, 14a) is the one-parameter group mapping;, onto M3 (see Theorem)1

Starting with a set of 3 algebras witltmi properties, Theorem 1 provides commutation
relations between their modular groups. One finds that these groups build a three-dimensional Lie
group (3 generators, 3 commutation relatipnk turns out to be a representation of the Lorentz
group in 2+1 dimensiongfor details see Ref.)9

Theorem 2: (Ref. 9): Let Mq,, M3, and M,3 be von Neumann algebras acting on a
Hilbert spaceH and letQ) e’ be a common cyclic and separating vector. Further assume the
following modular intersection properties:

(M1, M13,Q) has the- mi-property,

(M3, M13,Q) hasthet+ mi-property,

(M3, M1,,Q) hasthe—mi-property.
Then the one-parameter groups

VAR AL forr,siteR
generate a representation of the gro8®(2,1).
The main problem in proving this Theorem is to show that the representation of the rotation

by an angle of zr equals 1, see Ref. 9. A relation obtained in this investigation and needed in the
following, is given by

Lemma 1 (Ref. 9): Let the assumptions of Theorem 2 be fulfilled. Then the following relations
hold:

(a) AdUjp3141)d13(Mpz) = Mo,

(b)  AdUjp341)d1( Mgy =Mg;.
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At this point it is reasonable to ask how translations arise in this context. For this we assume the
existence of another modular inclusion. Applying the symmetry on it we get several unitary
groups. To achieve commutativity some more assumptions have to be satisfied. Finally, one
obtains a representation of the whole Poinagn@up in 2+ 1 dimensions.

Theorem 3 (Ref. 1): Let Mq,, Mq3 and M, be von Neumann algebras fulfilling the
assumptions of Theorem 2. Further J&tbe another von Neumann algebra with the following
properties:

(a) (NCM45,Q) is —hsm inclusion,

(b) Ad J13(Jrd12) = J12d

(c) [Ad J,3(Ixd12),J2Jd12]=0. Then one obtains a faithful, unitary representatigf s Of
the translation grougR?*. If

(d) for all « e R>* there exists g8 R?%, so that the relation

Ad Iy Urrand @) =Urrand B)
holds, then the modular grougs,,A%;,A%; and Al generate a representation of the Poincare
group in2+1 dimensions. This representation fulfills the spectrum condition.
One explicit commutation relation obtained in the proof of this Theofsee lemma 12 in
Ref. 1) is

AdUj;141)(Uyifa))=Uyifa) foraeR. 1)

We will need this result several times later on.

One might think that the assumptions of Theorem 3 are rather artificial. But using the result of
Ref. 12 one finds that 2 wedge-algebras with one lightray in common fulfill the requirement for
having a modular intersection with respect to the vacuifonmore details, see Ref. 1, and Sec.
III). Furthermore, a wedge algebra and its translation in lightray direction provide an example of
a half-sided modular inclusion. We will elaborate on this in the next section.

The topic of this article is an extension of Theorem 2 and Theorem 3-tb dimensions. In
order to do this let us first review some important facts concernitid {limensional quantum
field theory.

. MODULAR INTERSECTIONS OF von NEUMANN ALGEBRAS IN 3 +1 DIMENSIONAL
QUANTUM FIELD THEORY

Our framework will be the description of quantum field theory in terms of nets of local
algebras, see Ref. 2. In this algebraic approach the physical system is characterized by algebras of
bounded operators acting on a Hilbert spateindexed by space—time regions,

OCR3% A(0).

They might be interpreted as bounded functions of the observables localized in that region. This
net is assumed to fulfill the following physically motivated assumptfons:

(A) A(07)CA(0,) if O,C0O, (isotony),

(B) A(O1)CA(O,)" if 0,C0O5, where A(O)' denotes the commutant ofl(0), O’
e R%®! the causal complement @ (locality),

(C) There exists a unitary representation of the Poincgoeip,

U:P—B(H)

acting covariantly on the néPoincarecovariance

(D) There exists a unique vectd? e H, which is invariant under this representation
(vacuum).

Such a net describes a-3-dimensional quantum field theory in the algebraic approach.

The famous Reeh—Schliedeproperty of the vacuum now states that due to locality and
vacuum fluctuations any local algebra is cyclic and separating with respect to the vacuum vector.
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This enables one to apply the modular theory to ea4¢f(),()). For some special regions in
Minkowski space, namely, wedge regions, these abstract mathematical structures have a direct
physically interpretation.

A wedge region is determined by two linearly independent lightlike vedtoasdl, belong-
ing to the forward lightcone. With a convenient notation introduced by Borcétrss defined by

W1, l5]={al+Bl,+ L a>0,8<0) Lt}

Lt denotes the set of all vectors lying orthogonall joand |, with respect to the Minkowski
metric.

Bisognano and Wichmanmshowed that if the net is generated by bounded functions of
Wightman fields, then the modular groups associated with algebras of wedge regions act as
Lorentz boosts. More precisely one obtains the one parameter group of b(plqszt(st) leaving the

setW[l,l,] invariant,
Aijt(W[Il,lz]):Z/[(A|l,|2(—27'rt)).

The reader may consult Ref. 13 for an excellent review about recent results obtained in the
application of modular theory in quantum field theory.
For the following we will consider such a net and fix four lightlike vectors:

1,=(1,1,0,0,
l,=(1,—(1/3),2\/2/3,0),
l3=(1,—(1/3),— (2/3),— (6/3)),
1= (1~ (1/3),~ (213),(,/6/3)).

The spacelike components of these vectors build a tetrahddmithank Schmidt for the idea to

this choicg. Lemmas 2, 3, and 4 do not depend on the special choice of vectors, as long as they
are linearly independent and belong to the forward lightcone. But in this very symmetric case the
combination of some special Lorentz transformations implementing some permutations of the four
vectors is much simpler than for the general case. The subgro8(49f the permutation group

of 4 elements, we have in mind, is built by elements of the foryfjkl)=(jkl)(i) and (j)

X(kl) for pairwise differenti,j,k,1 €{1,2,3,4. Its representation by modular objects will be
important in the next section.

These lightlike vectors define wedge regiong|; ,1;] fori#j €{1,2,3,4. Let the associated
algebras be denoted by(WI[I;,l;]). Now, as already mentioned in the last section, modular
intersections occur in a natural way. Analogously to Ref. 12, Lemma 6 and Ref. 1, Proposition 7,
one shows

Lemma 2: LetA(0), OCR®*! be a net fulfilling the assumptions of the Theorem of
Bisognano and WichmarnThen,

(AW LD AV LD, Q) has the—mi property

for pairwise different i,j,ke{1,2,3,4.
To see howthsm-inclusions arise in this context we have to look at wedge regions translated
by vectorsae R3?,

WL ali={xe R¥(x—a) e Wi I 1}

Then we havdanalogously to Refs. 12 and,1
Lemma 3: Let the assumptions be the same as in lemma 2. Then far>@ll and i#|
€{1,2,3,4,
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(AWl aiDTAWVLL LD, Q)is a —hsm=inclusion.

In particular the one-parameter group that belongs to this inclysie® Theorem)lis equal
to the representation of the translationl jrdirection.

Furthermore in a given basis 8! one easily verifies

~ Lemma 4: Let the assumptions be the same as in lemma 2. Then the 6 modular groups

Al,fl(w[li 1D generate a representation of the gro8®(3,1).

It is not surprising that the modular groups in Lemma 4 and another “lightlike” translated
group together generate a representation of the whole Poigoaue.

In the next sections we will in a way invert this observation. Starting with a set of 7 algebras
lying in a specific modular position we will construct a unitary representation of the Poincare
group in 3+1 dimensions.

IV. REPRESENTATION OF SO(3,1)

First we will focus our attention to the Lorentz group. Motivated by Lemma 2 we want to
construct a representation of it by 6 modular groups of von Neumann algebras.

From our experience in algebraic quantum field theory the simplest Ansatz in this context is:

Assumption I'Let M;;, 1<i<j<4, be von Neumann algebras acting on a Hilbert spfdce
with a common cyclic and separating vecfde . Further assume that the triplé;; , My ,(2)
has the—mi property for pairwise different,j,ke{1,2,3,4.

In analogy to the case of “Bisognano—Wichmann-nets, in this abstract situation we also
denote the commutants of\f;; by M;:=Mj. (Notice that Lemma 1h states that
(M, My ,Q)z(/\/li’j ,Mi\,Q) has the+mi property) Assumption | already fixes two sub-
groups of the group S@,1). (The authors thank Schroer for the remark of relation B

Lemma 5: (A) The one parameter grou@%,A'{g, and A’; for a,b,ce R, generate a rep-
resentation 0fSQO(2,1).

(B) [U1424@),U1434b)]=0 for alla,b inR.

(C) The one parameter groups?,, A, and AL, for a,b,ce R, span a three-dimensional Lie
group.

Proof: Property(A) follows directly from Theorem 2. Fo{B) notice that Theorem 1 implies

Uisod —1+€™)U 34 — 1+€°™)
=AT(Az A1) A"
H - —27h, _ 27a i - —27h, _ 27a _
= AL(D+(172m) (In(e™2™(~1+€27%) +1) A ~i(L/2m) In(e™ 20~ 1+ ™)+ 1) A ~ib
We used(1f) in the first step and thefib) to pull the A ,-factor in front. Commuting the factors
A, and Ay, as well asA,, and A, and also using the abbreviatiar= — (1/27) In(e™2™(e2™
—1)+1) one similarly gets

Uigad —1+€?™)U (—1+e?™)

14,24

— Ai(a+(1/2m) In(e~2ma(—1+ ez’fb>+1)Ai(c—a+<1/2w)|n(e2’fa(—1+e*2”°)+1))
14 24

% A;(llzw)m(ez’fa(—1+e‘2”°>+l) _

An easy algebraic transformation shows that the exponents of the modular groups in both equa-
tions are equal.
Property(C) follows from property(B). O
Notice that the two commuting groups (B) are isomorphic to the translations belonging to
the isotropy group of the lightral,, see Sec. Ill. The Lie group ifC) consists of these transla-
tions and the dilatation in thi-direction.
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Simple combinatorics show that we obtain 12 commutation relations out of Assumption I. In
order to fix a group generated by 6 one-parameter groups one needs 15 relations. As it turns out
the Jacobi identities will roughly lead to the three missing ones.

Let us first assume that the algebras are chosen symmetrically. For this we define

Definition 2:

I (132)(4y=U21,24 1) I1U 1314 1) J13= U1 2 1)U 13141)

and those equations obtained from this by permuting the indices. Using Thébijeane can also
write I 132)(ay=U12,341)J12U13141)J13. We now state
Assumption II:

(@ AdT (132) (af M14) = Mga, AT (132) (4 M2a) = M4,
(b) Ad T (1342 M12) = M35, AdT (1342 M) = M5,

This situation is given in Sec. ll{due to the symmetric choice of the vectdis... |, and the
result of Bisognano and Wichmahn

Lemma 6: Products df 1354y @and I’ 1342 g€NErate a representation of a subgrousSed),
the permutation group of 4 elements. This subgroup is built by elements of the form (ijk)(I),(ij) (kI)
with pairwise different i,j,k&{1,2,3,4} The representation acts on the algebras by permuting their
indices in the denoted way.

Proof: Using Theorem 1 and Lemma 1 it is an easy exercise to showltha$4) and
I"(134)(2) act in the right way on the algebrast;; for i,je{1,2,3,i#j, since it is the same
situation as in the three-dimensional case.

We will sketch the proof foll” 134y and Mg,

AdT (1304 M13) =Ad U1 54 1)J15U13141)J15(My3)
=Ad Uz 24 1)J15(M>y)
=Ad Uz 24 1)(Myp) = Ms,.

Therefore this is also true for their modular objects. For algebras with indiceg=4 we need
the following observations:

I (132)(ay= Ad T (132)(a)( T (132) (4
=AdT (132)(4f(U21,241)J12U13141)J13)
=U13141)J331U373(1) J3o. 2
Analogously one gets
I (132)(4y= U32,31 1) I23U 21 o4 1) I .
Combined with(2) and Theoreni1c) this leads to the relation
T332y a)= (U124 131U 1314 1) 319 (U314 1) 351U 32 31 1) I52) U3 34 1) JpU 21 24 1) Is
=U21241)J12(U13141) U131 — 1)) (U3 3(1)Usp3( —1))U21 24 1)
=U21241)(J1U21241)J1p) = 1.
Using Assumptior(lla) this implies

AdT (135)(4f Maa) = Ad T {354 M19) = Ad T (135 af M19) = Mos.
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Analogous relations hold foF 134)(2). Taking products ol (134)(2) and I’ 1324y One obtains all
permutations of the formijk)(l) and (j)(kl) for pairwise different,j,k,l €{1,2,3,4. O
Assuming that the modular groups generate a 6 dimensional Lie group we use these symme-
tries and the Jacobi identities to obtain the missing commutation relations. At the end of this
section we will give a formulation of this additional Assumption using only modular Gaa
Assumption 11l and Propositon)2
~ Proposition 1: Let Assumptions | and Il be fulfilled. Further assume that the modular groups
A} for k,1 €{1,2,3,4 generate a six-dimensional Lie group. Then this Lie group is a represen-
tation of the groupSQ(3,1). . . '
Proof: Let N :=(i/2m)(d/dt)A}|;—o denote the generators. Theordb) and A=A, "
give the relations
[\

i Nkl = Nij = Nk 3

)\ij:_)\ji' (4)

It remains to prove the right commutation relatigns; ,\ ] for pairwise different indices. Start-
ing with linear combinations summing to zero and taking Lie-products accordirig) tib is a
lengthy but easy exercise to show the linear independence of 5 generators assuming that the
algebrasM;; are not identic. We further need the following observation:

Lemma 7: The real linear subspace formed by the elemgptommuting with\ 1, is at least
two-dimensional.

Proof: Rewriting the Jacobi identity one obtains

[N2,[A12—= N1, N 12— N32] ] =0.
Assume
[Nio=N1g Mo Ngp] = kg

for a e R. By (3) this is equivalent to

[N1a,A32]= (@ —2)N 1ot Ngot N1g. 5
Applying on both sides the “permutationl” 1432 gives

[Aa1. N 23] = [N14. N 30] = (@ = 2) N g3t Mozt Ay (6)

But (5) and(6) imply

(a@=2)(Ngz—N1p) + 2N 55+ 2N 41=0,

leading to a contradiction to the linear independence of 4 generators. O
We now take such a commuting element

4

> ajoNj2

]=3

+ + (134)\ 34

4
)\:( 22 alj)\lj

|=

with real «;; . According to the linear independence and the commutation relé8jdhis easy to
see thatwz,#0 holds. The relatiofix15,A]=0 implies

4
—agf o, Al = 1_23 (a1j= @jp) N 1o~ @13 13~ @14 14+ @\ 5ot @gohap. (7)
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Applying Ad T’ (15)(34) to this equation the left-hand side is invariant and the right-hand side gives
Efzg(alj—ajz))\ﬂ— @3\ ga— @\ o3t gl a1+ agoh 31 A subtraction of these two equations
gives

0=2(a13— agyt 14— agr) N1+ (@go— @1z) N1zt (azp— a1 Mgt (@14— azr) N o3

+(a13— as)N\ oy

and the linear independence of the generators impligs 13 and a14= a3,. Hence(7) may be
rewritten as

[A12,A3al= (N 13— Ng2) + B(N14— N30 (8
with a:=aq3/ a3, and B:= a4/ a34. Using a second time the Jacobi identity we obtain
[[N12:N34], N 1a] = N1p— Nag. 9
Next we insert relatiort8) into (9) and “permute” the result by" 1)34). This leads to
BIN12,:M34]= = (N33 Ng2) T a(Na— N3o). (10

The comparison of the coefficients (8) and(10) gives the missing relation
[N12,:M34] = N13=Ngo— Nygt Ao (11

The rest follows from symmetry.
~ Now all 15 commutations relations are fixed. In order to make sure that the modular groups

A'ltj“, ... ,A';j’“ generate a representation of @(1) one has to investigate the effect of the rotation
by an angle 2r. But this is the identity, as shown in the proof of Theorem 2 and Lemrtfarl
details, see Ref.)9 O

Let us next propose an assumption leading to the premise of Proposition 1:

Assumption lll: There exists ane’>0 and two strict monotone, continuous mappings
5:10,e'[—R" and §’:]0,e'[—R" so that for all 6<e<e' the relation

Ad J1AP.) CPse)Ssr ()
holds, where
Poa={ATASALI(r,s,)]:=r?+s?+?<é],
and
Se={ATAZAL|(r,s,)| <€}

denote neighborhoods of the Lie groups introduced in Lemma 5. _ .

Proposition 2: Assumptions I, II, and Ill imply that the 6 modular grou‘p'sz,...,Agj“ for
tio, ... t3,€ R generate a six-dimensional Lie group. .

Proof: We show that products of the modular group'élz,...,Agj“ can be commuted into a
determined order in a neighborhood of the identity. For this notice that Assumption IIl and the
symmetry imply that Adlj; (P.) CPs)Sse holds fori,je{1,2,3;. (For convenience we choose
a sloppy notation in this proof using the samidor all functions of types, §’.) Now Theorem
(1g) states

AdU13142)(Po)=Ad J12113(P) CPseSs(e) - (12
With help of Theorem 1 one further shows for el R,

u 13,12(2)Ai1r4: Ai1r4U 13,12(2927”)-
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Together with relatior(12) this implies
AdU 13142 26°™)(P) CPsoSse

for r in a neighborhood of zero. Due to the permutation symmetrys 4y this also holds for
U132, Ugz 23 FOrUqg 04, Uyg 34, andU,y 34 analogous relations follow directly from Lemma 5,
because they are elements of the Lie gréupNow Theorem(1f) finishes the proof. O

Combining Proposition 1 and 2, we finally arrive at

Theorem 4: Let M;;, 1<i<j<4 be 6 von Neumann algebras fulfilling Assumptions I, I,
and lll. Then their modular groups generate a representatio®©0f3,1).

A model fulfilling the assumptions of Theorem 4 was given in Sec. lll. In that case the 6
algebras are realized by algebras belonging to wedge-regions-ind8nensional Minkowski
space.

V. REPRESENTATION OF THE TRANSLATIONS

In this section we extend the representation given by Theorem 4 to a representation of the
whole Poincaregroup in 3+1 dimensions. Motivated by Lemma 3 we make the following as-
sumption(in addition to the assumptions | to )il

Assumption (A)Let A be another von Neumann algebra, so that the triple (M,,,Q) is a
—hsm inclusion.

As a candidate for the translation in directionlgfwe take

L{|1(a) =Ugn(a).

Choosing a basis iR*?, see Sec. Ill, one easily verifies

A (=In2)A  (In2)1=15.
Therefore a candidate to define the translationkdirection is given by

U (@) =AdU o(A) 1, (=IN2)Ay, 1 (IN2))(U (a))=Ad U134 1) (U (2)),

and analogously,

U (a)=Ad U, 3{1)(U (),

U (a)=Ad U144 1) (U (),
for all ae R. But there is an alternative way to these choices. We also have

A, (mIn2)A, 1 (IN2)1=15. (13
Hence it is also reasonable to set

U, (a)=Ad U144 1)(U,(2))

and similarly for the others. The following assumption implies the equivalence of both definitions.
Furthermore it makes sure that they are compatible with respect to the permutations defined in the
last section.

Assumption (B)Ad I (1) 234(Ind12) = Ind1z-

This is motivated by the observations made in Sec. lll. Because of The@mm,J, can be
interpreted as a discrete translationl jdirection. So it should be left invariant dy(1(234-

Notice that Assumptiolib) of Theorem 3 can now be derived from AssumptiéAs and(B):
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Ad J13(31200) = Ad T (1) (234312 J 120 0) = Ind12-

Analogously one obtains

AdJ14(J1200) =12

Next we prove the equivalence of both definitions:
Lemma 8: Assume (A) and (B). Then,

U (a)= (a)

forallaeR and ie{2,3,4.
Proof: Using (1) and Assumption B, then

[UlZ,lﬁ(l)!UlZ,/\/(z)]:[U12,ll(1)l‘]]\/‘]12]:0
holds. Combining this with Assumption B one gets
[F(l)(234)U12,1z(1),JN31i|:0-
Using Theoren(1c¢) it is easy to see, that
[T(1)@232U12,141),d12]=0
is fulfilled. Together with(17) we have

[T(1)@234U12,141),I5]=0.

83

14

(19

(16)

7

(18)

19

This implies that the modular conjugation to (Rg234U12,141)(N),Q) is the modular conju-

gationJ,, of . Furthermore,

AdT (1)234U 1214 1 (N)C My,

holds, which shows tha® is separating for
(NUAAT (1)234U 12,14 1) (M) C My,

again with the same conjugation. So modular theory tells us

N=AdT (1)234U 12,14 1) (N).
In particular we have

[ANT (1y239U12241)]=0

for all te R. Completely analogous td) the relation

[Ui2:14@),U (b)]=[U1z148),Up0(b)] forall abeR

holds (for details see Lemma 12 in Ref). INow using(20) and Theoren{1f) this gives

AdT (1)232(Uh () =l (&).
With F(l)(234): 1—‘(123)(4)1—‘(134)(2) it follows that

Ad F(_lés)(A)(ull(a)) =AdT (134) 24, (8))

(20

(21

(22

(23
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holds. Definition 2 and Theorem 1 imply
[ (13227 U143 D VU13141), (24
I (132)(4)= r(l%S)M): Ui2341)U13141). (25
Using relationg1) and(22) we obtain
AdU33:41)(U (a))=AdT (1)2saU 1214 1) (U () =U (a). (26)
Inserting(1) and (26) into (23), one finally sees
Uh(2)=Ad U434 1) (U (2) =Ad U1, A 1) (U () = U (a).

The remaining relations follow by symmetry. O
So finally we get the following “candidates” for the representators of translatioi&’ih
Definition 3:

(@ Uy, (a):=Us, (@),
(b) 4, (8):=Ad Uys o4 1) (14, (2) = Ad Uy o4 1) (1 (@),
(©)Uy,(8):=Ad U1, 34 1)(U () =Ad U434 1) (U (a)),
(A U, (2)=Ad U 4 1) (U (a) =Ad Uzs o 1) (U (a)),

for allaeR.

Using relations(1), (22), Definition 2 and Theorem 1 it is a straightforward calculation to
verify that this definition respects the symmetries introduced in the last section. To make sure that
these unitary groups commute, we state analogously to The@em

Assumption (C)[Ad Jo3(JpJd12),Ipd12]=0.

This is again motivated by the discussion in Sec. lll. In the case of Bisognano—Wichmann-
fields J,5 acts, up to a spatial rotation, like CTP. So it mapg,, upon another translation.

From relation(14) and Assumptior(C) it follows that the groups{ commute and that they
fulfill the spectrum condition. For details the reader may consult the proof of Proposition 11 in
Ref. 1. Hence,

Definition 4: Usane R —U(H) with

4
a= ( i21 aili) —Urrand @) ::ull(a'l)ulz( az)z/ﬁ3( a'3)ul4(a4)

defines a representation Bf%. It remains to show that these translations have the right commu-
tation relations with the representatiofy,, of the Lorentz group. As in Theoref3d) we need
Assumption (D)For all « € R®%, there exists 8 R>%, so that

Ad J 12(uTrani a') ) = uTrani :8) .

This is very similar to Assumption Ill. It makes sure that the whole representagignmaps
translations upon translations. To see this, notice that the relation

Ad Upo Ay, 1, (2770)) (U (3)) =14 (€2™a) 27

holds. Using Theorem 1 and Definition 2 one finds ﬂz@yf(/\h 1.(zIn 2)) maps translations upon

translations for allze Z. But these elements form a dense subset of3SkDand so the claim
follows from continuity.
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So togethet/, ,, andU+,,sform a Lie group. The next Proposition states, that they have the
correct commutation relations with each other.

Proposition 3: Assume (A]D). Thenl, o, and Ur,a,s g€NETate a representation of the Poin-
care group in 3+1 dimensions satisfying the spectrum condition.

Proof: Denote byti==—(d/da)u,i(a)‘a:o the generators of the translations. Relati@7)

implies
[Nij t]=—t;. (28)
With help of the Jacobi identities, one finds
[N, [t Nao]]= —tg, (29

[N13,[t1, N3] ] =11, (30)

As already mentioned abové ,, maps translations upon translations, so
4
[ty A3]=2, ait; with a;eR (31)
i=1

holds. Inserting relatioi31) into (29) one gets
—agtytastytag[ Mg ts]+ ag[ Mo t]= .
Analogously the substitution dB1) into (30) gives
—agtytag[ Mg o]+ astatag[ N3 th] =t
Using the symmetries a summation of these two equations leads to
(az—a3)[tz, Ao =(1+ ay—ap)tr+ (ag—az—Dty. (32

as>—az#0 holds because of the linear independence oéind t, (which is easy to see by
commutation ofat;+ Bt,=0 with \1,). So we obtain

(i—az—1)  (Itay—ap)
(az—as) ! (a2~ as)
ty,....t, are linearly independent. This can be shown analogously to the linear independence of the
boost-generators and it is an easy but lengthy computation of the same type. For details one may

look at Ref. 14.
Applying Ad T’ (123)(4) to (33) the comparison witli31) gives two sets of solutions far, and

[Ai2,t]=— ty=1&4t+ 6oty (33

ag,
{a2=—1;a3=1} and {a2=a3+1}.

Using the Jacobi identities another time the second case again leads to contradiction. See Ref. 14
for more details. Therefore we obtain the remaining relation

[Aio,t3]=to—ty

and again the rest follows from symmetry. O
Combining Theorem 4 and Proposition 3 we finally arrive at
Theorem 5: Let M;; ,i<je{1,2,3,4 be von Neumann algebras fulfilling Assumptions |, Il
Il and A to D. Then their modular groups generate a representation of the Poirgrangp in
3+1 dimensions, which fulfills the spectrum condition.
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We can use Theorem 5 in order to constructial3dimensional quantum field theory starting
from a set of seven algebras(;; for i,j<{1,2,3,4 and.\ fulfilling Assumptions I, Il, Ill and A
to D. For this one further needs the assumption fhas also cyclic for the local algebras to be
constructed. We start by interpretivlgf;; as the local algebras associated with the wedge regions
WII;,I;]. But this is not unique due to the invariance of the wedge regions under special Poincare
group elements. Therefore we use the minimal definition by taking the intersection of all possible
choices. Analogously we define local algebras associated to double cone. As already mentioned
above() is assumed to be cyclic for these algebras and therefore modular theory implies

AL LD = M;; .
For details one may look upwhere the construction sketched here is carried out in detail.

VI. OPEN QUESTIONS

We conclude this article by mentioning some problems that are left open.

Looking at the requirements we assumed a symmetric situation, see Assumption Il. But it
seems plausible that the assumption of a special symmetric situation is not fundamental. Such a
situation may be achieved by applying suitable unitary transformations on more general sets of
algebras. So we expect that this assumption might be omitted.

Furthermore Assumption Ill, used to be able to apply the Jacobi identity, calls for nicer
criteria. In the given form it is hard to verify. Therefore, it is desirable to have a formulation which
is manageable. The presented one was only made for technical purposes and should be formulated
in a less technical way.
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The capacity of a quantum channel for transmission of classical information de-
pends in principle on whether product states or entangled states are used at the
input, and whether product or entangled measurements are used at the output. We
show that wherproduct measurementre used, the capacity of the channel is
achieved withproduct input statesso that entangled inputs do not increase capac-
ity. We show that this result continues to hold if sequential measurements are
allowed, whereby the choice of successive measurements may depend on the re-
sults of previous measurements. We also present a new simplified expression which
gives an upper bound for the Shannon capacity of a channel, and which bears a
striking resemblance to the well-known Holevo bound. 2601 American Insti-

tute of Physics.[DOI: 10.1063/1.1327598

I. INTRODUCTION

A. Overview

Bennett and Shomote that there are, in principle, four basic types of channel capacities for
“classical” communication using quantum signals, i.e., communications in which signals are sent
using an “alphabet” of pure states of quantum systems and decoded using measurements on the
(possibly mixed stajesignals which arrive. The mixed states are the result of noise which is
represented by atochasticor completely positive, trace-preserving mdp The four possible
capacities correspond to using product or entangled states at the input, and using product or
entangled measurements at the output. These are denoted as fdlgwsproduct signals and
product measurementSyg, product signals and entangled measureméys; entangled signals
and product measuremen@;g, entangled signals and entangled measurements. In more precise
language “using product” means restricting to products and “using entangled” means using
arbitrary (product or entangled states or measurements. Hence, it is evident tGap
<{Cgp,Cpg<Cge. The main purpose of this note is to show tkiai= Cgp, i.e., that if one is
restricted to using product measurements, then using entangled inputs does not increase the ca-
pacity. ThusCpp=Cgp<Cpg=<Cge. It is knowrf that one can have strict inequality Bpp
< Cpg for certain non-unital channels. The question of whether or not one can have strict inequal-
ity in Cpe=<Cgg is open, although numerical evideR€esuggests equality.

B. Notation and definitions

To give precise definitions, we use relatively standard notafionwhich M={E,} denotes
a “positive operator valued measuremerPOVM) i.e.,E,=0 and=,E,=I. Let p; denote a set
(or alphabetof pure state density matrices; a discrete probability vector, ang=>;m7;p; . We

dDedicated to Robert Schrader and Ruedi Seiler on the occasion of their 60th birthdays.
BElectronic mail: king@neu.edu
9Electronic mail: bruskai@cs.uml.edu
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let &={m;,p;} denote this ensemble of input states. B&{hand p; are operators on a Hilbert
spaceH, so that the stochastic mab (representing the noise in the chanratts onB(), the
algebra of bounded operators @h We will write ?z{wj ,®(pj)} for the ensemble of output
states emerging from the channel.

We write the dual ofP (or adjoint with respect to the Hilbert—Schmidt inner produxsﬁ;
so that T{®(p) E]=Tr[p $(E)]. The adjoint of a stochastic map takes a POMNI={E,} to

another POVMMz{Eb} since the trace-preserving condition énis equivalent to?ﬁ(l)z I
The information content of a noiseless quantum channel with a fixed input ensemble and a
fixed POVM can be described using the standard Shannon formula of classical information theory.
Definition 1. For a fixed ensemblg={7; ,p;} and a POVMM={E} on a Hilbert space+,
the quantum mutual information is given by

IQ<5;M>=S<Tr[pEb]>—$ 7 S(Tr[piEp]), (1)

where Tr[pEy]) denotes the Shannon entropyX=p,logp, of the probability vector with
elements p=Tr[ pEy] [and similarly for §Tr[p;E;])].

The information content of a noisy channel defined by the stochasticdmambtained from
(1) by replacing€ by the output ensembl@z{wj @ (pj)}. Alternatively, since Tf®P(p;) E]
=Tr[pj75(E)], we could instead choose to regard the “noise” as acting on the POVM, and
obtain the capacity froril) by replacingM by M. Although this viewpoint is atypical, it can be
useful, as we will see in Sec. IV.

Definition 2: For a stochastic magb, an input ensembl&€={m;,p;} and a POVMM
={Ey}, the quantum information content is given by

I?p(s:m:IQ<E’;M)=IQ<5;M>=S<Tr[<D<p>Eb])—; 7 (Tr[®(p))Ep] ). 2)

We consider memoryless channels in which multiple uses of the channel are described by the
n-fold tensor produc® ® ®---® ® acting on the tensor product Hilbert spade H- - -® H which
we denote by®®" andH ®", respectively. This allows us to define the “ultimate” information
capacity of the channel as the asymptotic rate achievable when entangled inputs and measure-
ments are used.

Definition 3: The entangled signals/entangled measurements capacity of a quantum channel is
defined as

1
Ceg(®P) = lim = suplgen(EM), ®)
n—o n EM

where the supremum is taken over all possible (product or entangled) signals and measurements
onH®",

To define capacity restricted to product measurements, we Wtité for a product POVM of
the form{E, ®E, - ®Ey }.

Definition 4: The entangled signals/product measurements capacity of a quantum channel is
defined as

1
Ced( @)= lim —~ sup lgan(EMEN). (4)

n—oo &M ®@n

Note that the existence of the limits follows from superadditivity of the classical capacity.
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The capacitie€ppandCpg can be similarly defined. We writ€®" to denote an ensemble of
the form{m;  ; .p;,® -®p; }, where{p;} is a fixed collection of states, addr; . ;}is
some joint probability distribution.

Definition 5: The product signals/entangled measurements capacity of a quantum channel is
defined as

1
Cee( @)= lim ~ sup lgen(E5™MM). (5)

n—oo £®n,M

Definition 6: The product signals/product measurements capacity of a quantum channel is
defined as

1
Cee(®)=lim —  sup lgan(E5MM®M). (6)

n—oo 5®HM®H

The additivity of classical information capacity immediately implies the following result.
Theorem 7: The product signals/product measurements capacity of a quantum channel is
given by

Cpe( @) = Cshaf P) = supl 4,(&; M), @)
EM

which we call the Shannon capacity

A far deeper result is thafpg(®) can be re-expressed in terms of the well-known Holevo
bound®31°This result was proved independently in Refs. 3 and 11, building on earlier work in
Refs. 4 and 12.

Theorem 8: (Holevo-SchumachefWestmoreland): The product signals/entangled measure-
ments capacity of a quantum channel is given by

CPE(‘I’)=CH0|V(¢)=S‘L€JF<S[‘I’(p)]—; 7 SLP(pj)]], ®

where §P)=—Tr (P logP) denotes the von Neumann entropy of the density matrixve call
this the Holevo capacity of the channel

C. Summary of results

Our main result, that using entangled inputs with product measurements does not increase the
capacity of a channel, can be stated as

Theorem 9: For any stochastic mgpCgp(®P)=Cgpa(P).

There is another implementation of product measurements which has the potential for a
greater capacity. It involves a sequence of POVM'’s on the product sg#é8s whereby the
POVM for the second measurement depends on the result of the first measurement, the POVM for
the third measurement depends on the results of the first two measurements, and so on. The idea
is that “Bob” can choose his successive POVM'’s based on the results of previous measurements.
We write CE'{(®) for the maximum asymptotic rate achievable for such a sequence of condi-
tional POVM'’s, with entangled inputs allowefThe precise definition of a conditional POVM is
postponed to Sec. IV and the capacity is given(B4).] Our next result shows that using such
conditional POVM's with entangled inputs again does not increase the channel capacity.

Theorem 10: For any stochastic mapCEq ®) = Cgpal P).

Theorem 10 was proved independentynd simultaneous)y using different methods, by
Shor®® and also later proved independently by Holé@ conditional POVM is not the most
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general situation involving product measurements, which would be a POVM in which each mea-
surement can be written as a tensor product. Except for the obvious bounds, we know of no results
for the capacity associated with such POVM's.

The capacity of a classical channel can be written agghigably restrictedsupremum of the
classical mutual information. We extend this observation to the quantum case, using a tensor
product formulation whereby the first tm@nd possibly all four of these basic capacities are
realized using mutual information in the form of the relative entropy of a density matrix and the
product of its reduced density matrices. This leads to the following upper bound:

Theorem 11: For any stochastic map

CEP<<I>>ssur{S<p>—§ S(\p ®(Ep)Vp) +S(7) |,

M,p

wherer,=Tr®(p)E,=Tr pffﬁ(Eb).

We call the quantity on the right/gp, and we conjecture that it is equal @:p, i.e., that
equality holds in Theorem 11 above. We motivate and stuiglyin Sec. 11 C, where we show that
it can be rewritten in a form similar to the Holevo capacity. Combined with Theorem | C above,
this conjectured equality would provide a simplified expression for the Shannon capacity of any
channel, whereby the sup over both input ensemble and POVM is replaced by a sumever
average input state and the POVM.

Although the proof of Theorem 10 does not depend on our tensor product reformulation, we
present this material first, in the following section, because we feel it gives some useful insights.
Section Il is largely pedagogical and provides the motivation for our conjectured expression for
Cep. Section Il is also primarily pedagogical; it introduces the reader to Hole@e'€) and
Q-C channels This leads to a short proof of both the well-known Holevo bound and the new
bound in Theorem 11. Moreover, the additivity @-C channels implies Theorem 9 and moti-
vates our proof of Theorem 10. The reader primarily interested in this proof can skip directly to
Sec. IV.

II. CAPACITY FROM MUTUAL INFORMATION

A. Classical background

The classical mutual information of twoandom variablesX and Y measures how much
information they have in common and is given by

p(X,y)

p(0P(y) ©

|°<x;Y>EXEy p(x,y)log

If X andY represent the input and output distributions of a channel, then the classical Shannon
capacity is the supremum of(X;Y) taken over all possible joint distributions allowed by the
channel.

The Shannon capacity of a quantum channel can also be obtained in this way provided that the
joint distribution arises from a quantum communication procdss(M) as

p(i.b) = Tr[®(pj)Ep]=m; Tr[p;® (Ep)]. (10

Although the stochastic mab is usually regarded as noise acting on the sigpglst is important
to recognize that it has another interpretation corresponding to the second exprespignapm
(10) above. In the second case, the channel transmits signals faithfully, but the “noise” distorts

the measurement process by converting the PO} to a modified POVM{Ebza(Eb)}
implemented by the action of the dual &t
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In order to make the transition from classical to quantum communication, it is sometimes
useful to consider a classical probability vecpx) as the diagonal of a matriR. We can then
write therelative entropy

H(P,Q)=Tr[PlogP—PlogQ] (11

in a form which reduces to the usual classical expression whandQ are diagonal, but is also
valid whenP andQ are density matrices representing mixed quantum states. In this not@tion
becomes

1S(X;Y)=H[P1,,P1®P,], (12

whereP,,P,, andP, are diagonal matrices with nonzero entn¥s,y),p(x) andp(y), respec-
tively.

B. Tensor product reformulation

A reformulation and generalization of mutual information and capacity can be made using
formal tensor products. It should be emphasized that this is done for convenience of notation and
is distinct from the tensor products used in describing multiple uses of the channet Agir
=C'eCM@HeH, wherej=1..J, b=1..M, and’Ho="Hg="H is the original Hilbert space on
which p and E,, act. The partial traces then correspondTip=%;, Tg=2y,, To=Tr, and Ty
=Tr.

Let Pagq be the block diagonal matrix with blocks; v (p;) E,V®(p;) and ﬁ’ABche block
diagonal matrix with blocksr;\p; @ (Ep)p;.

ThenPag=ToPaso=ToPaso=Pas andP,g is a diagonal matrix witinonzerg elements
p(j,b)=m; Tr[®(p;) Ex], Pa=TgcPaso=TePag is @ diagonal matrix with elements;;,
Pg=TaqPaso=TaPag is a diagonal matrix with element$,,7, where 7,=Tr®(p)E,
=Trp5(Eb) as in Theorem 11.

It is straightforward to verify that

Cpp=Cshad P) =sud S(Pg) —S(Pap) +S(Pa)] (13
EM
= SUpH(PAB y PA® PB) - Supl (ql)(g,./\/l)
EM EM

=supl 9(&; M) = supl & M), (14
&M &M

where the last line if14), although redundant is included to emphasize the fact that we can
suppress the explicit dependencedmy using either a restricted ensemble with= P (p;) or a
restricted POVM of the forn® (Ep)-

Note that all the matrices ifil3) above are diagonal and could be replaced by probability
vectors. The quantum character of the channel is hidden in the fad® taanust be the reduced
density matrix of aPgq of the form above with quantum blocks. Thus we might have replaced
sup: ,( above by either SLH%BQH(PAB,PA® Pg) or sumABQH(PAB,PA(@ Pg) with the under-

standing that the supremum was to be taken over tifRgg, or I5ABQ with the block diagonal
form given above.

We can find a similar expression for the Holevo capacity by noting Bagi=TgPagq is @
block diagonal matrix with blocksr;®(p;), andPo=TagPagqo=TaPao=P(p)-

It is again straightforward to verify that

Cpe=Chon(P)= SSQS( Po)=S(Pag) +S(Pa) 1= Sng (Pag:Pa®Pg). (15
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We can interpret this as a classical to quantum mutual information between the classical probabil-
ity distribution 7; of the input alphabet and the average quantum distribuidp) which
emerges from the channel.

We conclude by observing that the entanglement assisted capacity of Ref. 15 can be written in
a similar way as

sugH(por.Po® pPR):por=(P &) (| ¥ )(¥|)} (16)

with W e C?>® C2. This differs slightly from Eq(4) of Ref. 15. However, becaus# )(¥| is pure,
their S(p) = To(| TN W) ]=FT1(|¥)}{¥|)]=S(pr) in our notation. Thus the expression in
(16) above is equivalent to Eq4) of Ref. 15. This is a form of quantum to quantum mutual
information between the subsystems of an entangled pair, one of which is subjected to noise via
transmission through the channel.

We also expect that the capaciBge can be expressed addifferen quantum to quantum
mutual information. Unfortunately the precise form has eluded us. This approach does, however,
lead in a natural way to a new expression relate@tp.

C. Proposed expression for  Cgp

To motivate our new candidate f@gp, we letPgg be the block diagonal matrix with blocks

Jp ® (Ep)p. Then,Pg =TgPgr is a diagonal matrix with elements,, Pg=TgPgr=p, and
define

Uep(®) = Suf S(Pg) + S(Pg) — S(Pgr) ] = SUpH(Pggr, Pr® Pg) (17)
M,p M,p
=sup[S<p>—2 S(Vp @ (Ep)Vp)+S(7)|= sup| S(¥)— > 7S(7) |,
M,p b Th7b b

(18)

where yp= (/) Vp @ (Ep)Vp and y=S,7,y,=p. The last form(18), looks like the Holevo
capacity with the input ensembde={7; ,p;} replaced by a new “output measurement ensemble”
{mv,7p}- HOow can we characterize this ensemble? Using Kraus operators we cand{pije

=3 AlpA,, whereS, A Al=1. It follows that y,=(1/7,) =B}E,By with B,=Al\/p. Hencey,

is a density matrix in the range of a completely positive map which, rather than being trace-
preserving or unital, satisfies,B,Bj=®(p). If we definel’ ,(P)=\p ® (P)\p we can write

uEp<<1>>=sup<S[F,,<l>]—E ST ,(Ep)]]- (19
M,p b

A different characterization is given in the next section as a conditioRgn

We can interprefl17) as a quantum to classical mutual information between the average input
p and the classical probability vectay, associated with the correspondingly averaged output
measurements T]@(Eb).

We conjecture thal) .p= Cgp although we can only shoW gp=Cgp, Which is proved in the
next section. Note ifb is the completely noisy channel which maps every density matrix to the
identity, thenPgr=Pg® PR so thatH(Pgr,Pg®Pgr)=0 as expected. This also holdsgfis a
one-dimensional projection.

D. Optimization constraints

We can rewrite all of these expressions for capacity as the suitably constrained supremum of
an “Input—Output” mutual informationH (pzp,p7®pe), i.€.,

sugH(pz0,p1®po):p1o is a density matrix inXzo}, (20
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where the subseX;, lies in A;® A, and the algebrad is either C™*" or D", the algebra of
diagonalnxn matrices. We will letG={E:0<E=<I} denote the set of positive semidefinite
operators less than or equal to the identiythe set of density matrices, ardD the set of
positive semi-definite matrices with traeel, i.e., the set of matricesP, whereP is a density
matrix and O=A <1,

. T, .Y, =
Cep: X70={pas=TrqPABQ:PAG PABQPAG €D"@D"@d (G)}.

In the case of maps 082”2 we expect this to be a subsetDf® D? although, in principle,
it could be a subset db*® D?,

Cre: Xz0={paq:PageD"®P(<D)},

Uep: Xz0=1{per:ps " Perps " €D"®® (G)},
Cee: We know only thatX;,CC""®C"*",

In order to conclude that these expressions are equivalent to those given previously, we need
to verify that whenp;, is in the indicated set, one can always find a corresponding ense&mble
and/or POVMM. The block diagonal conditions implicit in the notation above and the fact that

® andd are trace-preserving and identity preserving respectively, makes this quite straightfor-
ward.

Whenn=2, we can describg explictly by writing E=wgl +w-o where o= (oy,0y,0;)
denotes the formal vector of Pauli matrices amdin R®. Then O<E=<I if and only if |w]
<=min{wg,1—wy} so that

G= U {E=wpl +w-o:|w|<=min{wy,1—wy}}.
wge[0,1]

[ll. BOUNDS VIA Q- C CHANNELS

Holeva'® introduced an extremely useful family of stochastic maps of the form,
Q(P)=2 R Tr(PXy), (1)
K

whereRy is a family of density matricesX, is a POVM. He also distinguished two important
subclasses of these channels
Qqc: Quantum-classical channels in whié=|e)(e,| so that each density matrix is a one-
dimensional projection from an orthonormal bagig};
Qcq: Classical-quantum channels in whigh=|e,)(ey| so that the POVM is a partition of unity
arising from an orthonormal basjs,}.

Holevo'® showed that the quantum capacity of such channels is additive, i.e.,

Cre(Poe® P @ Poo) =Cpe( P o) =N Cpe( Prc),

and similarly foGCE(CID%‘):n Cre(®cg). In the next section, we use Holevo's strategy for
proving additivity for®-q to prove Theorem 10.

We now show that both the celebrated “Holevo boun@p®)<Cpg(®P) and the new
bound Cp(®)<Ugl(P) follow easily from the monotonicity of relative entropy undfroc
channels. Our strategy is similar to one used earlier by Yuen and GZawa.

In the first case, we leflgg be a Q—C map of the form(21) with X,=E, and R,
=|ep){ep|. Then,

H(Pag,PaA®Pg) =H[Qqa(Pag) Qqe(Pa®Pg) |<H(Paq,Pa®Pg), (22)
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whereP,q andP,g are as in Sec. Il and we have suppressed the identitp €145 . Taking the
supremum oveEt yields Cp(P)<CpP).

For the new bound, le g, be aQ—C map of the form(21) with X;=m;p~%p; p~? and
Rj=|ej)(e;|, so thatQra(Pgr)=Pag. Then,

H(Pag,PA®Pg)=H[Qra(Pgr),Qra(Pg®PRr)]<H(Pggr,Pg®Pg)

from which it follows thatCpy @) < U (P).

Remark:It may appear that the argument (i22) above yields a simple proof of the Holevo
bound without using the strong subadditivigSA) of relative entrop} as in Ref. 19. However,
Lindblac?® made the useful observation that any stochastic map can be represented as the partial
trace after interaction with an auxiliary system, i®(P)=Tg[UxgP® EBULB]. In fact, he used
this representation to obtain monotonicity as a corollary of SSA. Thus, the arguments used to
obtain the Holevo bound via monotonicifgs above or in Ref. J7and via SSAas in Ref. 19are
essentially equivalent. In the latter approach, an auxiliary system is added explicitly and then
discarded; in the former, this is done implicitly via Lindblad’s representation theorem. Further
discussion of the history of the closely connected properties of SSA, monotonicity of relative
entropy and the joint convexity of relative entropy is given in Refs. 21-23.

IV. PROOF OF ADDITIVITY USING Q-C CHANNELS

Theorem 9 can be obtained from Holevo’s rejs,‘iﬂhatCHow(QQc) is additive, i.e., ifl" is a
Q-C channel of the form following21), thenC,(I") is additive. To show how this follows, we
define

FW(P):% |ev)(ep Tr[P® (Ep)]. (23)

ThenI'y ,(P) is aQ-C channel withxnzzﬁ(Eb). Moreover, supl (& M)=Chon(Te r1),
and the additivity ofCpo(I'g g implies suplgen(EM “™) = Cuon(T'g ") = NCrio( T 1)
Then Theorem 9 follows from

Cshaf P) = supl ¢(& M) =supCpon(I'p 1) = Cep(P).
&M M

In order to prove Theorem 10, we will need to extend Holevo’s result. Our extension, which
we present below, follows Holevo's straté§yvith the identity(27) replacing subadditivity. This
also provides a self-contained proof of Theorem 9, since a product measurement is a special case
of a conditional measurement.

First consider a product channel with Hilbert spa¢g H, and noise operateb, @ ®,. Let
E1,=1{mj,p;} be an ensemble of possibly entangled input stateste®H,. Let M;={E}
denote the POVM or; which implements the first measurement, and for eladbt M,(b)
={E®} denote the POVM orH, which implements the second measurement. We then define a
joint POVM M, on H1® H,, hamely{E,® E(cb)}. Note that although each element.bt;, is a
product, the joint measurement need not be the product of independent measurdrents
®M,. This is the result of the fact that the second measurement may be conditioned on the
results of the first. Nevertheless, it is easy to verify thdt, is a POVM since

bZ Eb®Egb)=% E,®| > Egb>>=% Ep®l.
,C [

The information content of a channel using such conditioned measurements is

19, 00, (E12:M12) =19 E12; M1p) = 19(E 153 M), (24)
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where £, M,(b), and M, denote the POVM's in whiclEy, is replaced byF,=d,(E;,) and

E® is replaced byE(” = d,(EL), and we have used the notation definedlinand(2). Because
we are interested in studying the capacity for a fixed set of POVM’'s, we use the form
19(&1,; M) and proceed as if we were considering a noiseless channel with a restricted POVM
of the above form. Although this viewpoint is useful, it is not essential. The argument would work
equally well if we explicitly included the stochastic maps or used the fo¥(8;,;M;,) and
defined reduced density matrices using partial traces acting on, @.g2,%,)(p;).

For any input ensemblé&;, we now define a pair of associated input ensembleg{prand
Hz, respectively. For this purpose it is useful to Tetdenote the partlal trace ovef;. First, let
pJ —Tz[pj] be the indicated reduced density matrix ahe-{ 7; ,p] } This is our ensemble on
'H,. Second, for each andb, define a state ofi{, by

p{A=p(bl)) 1 T1[(pj) (Fe® ], (25)

wherep(b|j)= Tr[pJ(Fb®I)] Then the corresponding input ensemble?®nis
&x(b)={p(j|b), pi}}, wherep(j|b)=p(blj);/p(b) and

p<b>=; wjp<b|j>=Tr{(2 wjpj)ﬁ@l) : (26)
We claim that
l%elz;Mlz):I‘*(sl;MlH; p(b) 19[&5(b); My(b)]. (27
Since
19E5(b); Ma(b)]=1 [€x(b); Ma(D)]=Cspaf D2), (28)
it follows immediately from(27) that
IQ(elz;M12)<IQ<51;M1>+§ P(b) Cspaf @2) =19(E1;My) + Copad P2). (29)

Taking the supremum over channels of this type, which we now emphasize by Wki’tii@d,
gives

SUP 1% 0a,(E12iM = SUP 19(Eppi ME<Copaf ®1)+ Copaf P2). (30

cond cond
E12. M1 E12. M35

However by restricting to product ensembles and product POVM'’s in the sup on the left-hand side
of (30), and using additivity of the classical capaci®), we deduce

sup 13 Lob,(E12; M$3Y=Cgpaf 1) + Conal P2). (31)

cond
€12 My

Hence we have an equality {80).

Now consider then-fold product channedb;®---®®,. Let M " be a conditional POVM
on H,®---®H,. By assumption, every operator in this POVM has the f@peE, where
{E,} is a conditional POVMN*®"on H,®--® H,_,, and for eacth, E® constitute a POVM
on H,. Also, for any input ensemblé€ on H,®---®H,, let £ be the ensemble of reduced
density matrices oft{;®---® H,_1. Then(29) implies



96 J. Math. Phys., Vol. 42, No. 1, January 2001 C. King and M. B. Ruskai

sup |9p1®q>2®~-®<1>n(5§Mcond)s sup I9D1®(I>2®~--®<Dn71(51;Nconcb+cshar((bn)- (32
aM cond & 'Ncond

Iterating (32) gives

n

SUP 130,000, (EM™™)S 2 Conaf D). (33)
&M cond =

The definition of conditional capacity is

1
COYd)= lim — sup I an(E MM, (34)

n—oe e Ay cond

Hence if we letd,=d, (k=1,2,...) itfollows immediately from(33) that
74 D)< Cspaf D). (35

Since the capacity of the product channel is never less than the sum of the channel capacities, i.e,
CEYD)=Cgpaf ®) We must have equality if85) which proves Theorem 10.

It is worth noting that our argument can be used to prove a somewhat stronger result, namely,
that sup13,(&; M "9 is additive ind for any fixed conditional measuremef "

All that remains is to verify(27) which is, except for notation, equivalent to the following
result from classical information theory: for any random varialdldgs, C,

15(J;B,C)=1%(J;B)+1%(J;C|B). (36)

Although the derivation of(36) is quite elementarysee, for example, Refs. 24 and)]1@or
completeness we include it in the Appendix, where we also show its equivalel(2@)to

ACKNOWLEDGMENTS

C.K. was partially supported by the National Science Foundation Grant No. DMS-97-05779
and RSDF award from Northeastern University. M.B.R. was partially supported by the National
Security AgencyNSA) and Advanced Research and Development ActitdiRDA) under Army
Research OfficéARO) Contract No. DAAG55-98-1-0374 and by the National Science Founda-
tion under Grant No. DMS-97-06981.

It is a pleasure to thank C.H. Bennett, J.A. Smolin, and B.M. Terhal for useful discussions
which helped to crystallize our understanding of this problem, and P. Shor for communicating his
independent proof of Theorem 10. We are also grateful to the referee for an extremely careful
reading of the manuscript.

APPENDIX: A USEFUL INFORMATION IDENTITY

First we relatg27) to an expression involving classical mutual information. The input alpha-
bet of the product channel can be described by a classical discrete random vayiatitese
distribution is given by the input ensemlidlg,, that is,P(J=j)= ;. The output alphabet can be

described similarly by a pair of random variabBC, corresponding to the joint POVMA .
The joint distribution ofJ,B,C is given by application of formul&10), namely,

P(J=},B=b,C=c)=p(j,b,c)=m Tr (p;) F®F]. (A1)
Applying the definitions in(1), (9), and(10) gives directly
19(3;B,C) =1%(E12: M), (A2)

Furthermore, by summing overin (A1) and conditioning orj, it follows that
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p(b|j)=Tt[ (pj) Fpo@ 1 1=Tr[ (pj) V' Fy]. (A3)
Comparing with the definition of the ensemidlg, it follows that

15(J;B)=19(&,; My). (A4)

For the second term on the right-hand sidg38), recall that by definition,

1°(3;C| B>=§ p(b)I°(J;C|{B=b}). (A5)
Also,
p(c|],b)—W—Tr[ (pjp) P FI ] (A6)

andp(j|b)=p(j,b)/p(b)=p(blj)m;/p(b), so therefore
19(3;C [ {B=Db}) =19(&x(b); My(b)). (A7)

Hence Eqs(27) and(36) are identical.
As noted before(36) is a standard result in information theory. We include its derivation for
completeness. The left-hand side can be rewritten as

1(J;B,C)=H(J)+H(B,C)—H(J,B,C), (A8)

whereH (X) is the classical entropy of the random varialfle The two terms on the right-hand
side are, respectively,

1(J;B)=H(J)+H(B)—H(J,B), (A9)
1(J;C|B)=H(J|B)+H(C|B)—H(J,C|B). (A10)
Further, for any random variablesandY,
H(X]Y)=H(X,Y)—H(Y), (A11)
and thereford A10) can be written as
1(J;C|B)=H(J,B)—H(B)+H(C,B)—H(B)—H(J,C,B)+H(B). (A12)

Adding (A9) and (A12) gives the right-hand side @¢A8), which proves the result.
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This paper addresses the following problem of relativistic quantum field theory:
Given a relativistic quantum field, construct a net of local observable algebras over
space—time with “natural” properties. A few years ago we started a project which
suggests to look at this problem in the framework of relativistic quantum field
theory in terms of Fourier hyperfunctions. Accordingly we present the relevant
analyticity results, some modular aspects of our theory for the Bisognhano—
Wichman argument, and a concrete suggestion for the definition of the local ob-
servable algebras. Finally, we construct a class of models of hyperfunction quan-
tum fields for which the algebras of bounded operators assigned to nonempty
regions in space—time are not trivial. It is remarkable that our models are not
tempered quantum fields and do not admit “test functions” of compact support.
© 2001 American Institute of Physic§DOI: 10.1063/1.1326460

I. INTRODUCTION

The problem of defining and of constructing a causal net of operator algebras for general
relativistic quantum field theory has attracted considerable attention in the last 15semfRefs.

1-6). Typically additional(mainly technical assumptions are involved to define causal nets of
operators algebras for a standard quantum field theory, i.e., a relativistic quantum field theory in
the sense of &ding and Wightmari. Ultimately the goal is to construct an algebraic quantum
field theory in the sense of Haag and Kasfiétowever, at the moment it is still open what the
most appropriate way of defining these local algebras is though there have been a number of
promising suggestion's® And the problem of nontriviality of the operatdralgebras assigned to

an open nonempty region of space—time is also not settled in these suggestions.

Accordingly we found it attractive to look for another framework to address these problems.
Here we suggest to use the framework of Fourier hyperfunctions which is weaker than that of
tempered distributions. Thus we have to choose quite a different route to proceed.

Our attempt is also motivated by the fact that the question of which type of generalized
functions one should use in the formulation of relativistic quantum field theory, has not yet found
a final answer. From the construction of mofelad from general considerations there are strong
indications that in the framework of hyperfunction quantum field theébllyQFT for shor}, i.e.,
relativistic quantum field theory in terms of Fourier hyperfunctidf$pne can do better with
regard to these problems in so far that the additional assumptions can be dtoppédeast be
weakened considerablyOther reasons for why it is attractive to study quantum field theory in
terms of Fourier hyperfunctions are given in Refs. 11 and 12.

For the convenience of readers who are not too familiar with HFQFT and its motivation we

3Electronic mail: shigeaki@pm.tokushima-u.ac.jp
BElectronic mail: ebruning@pixie.udw.ac.za

0022-2488/2001/42(1)/99/31/$18.00 99 © 2001 American Institute of Physics
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recall the main points(1) The fact that in four-dimensional space—time no nontrivial standard
quantum fields have been constructed indicates that the axioms of QFT in terms of tempered
distributions might be too strong2) On p. 425 of Ref. 11 one finds the following:

In conclusion we remark that Jaffe’s formulation of the problem is not the most general. One
might try [in the spirit of the work of Martineau (1963), for example] to define local properties of
generalized functions (in particular the notion of support of a generalized function) even when the
space of test functions does not include functions of compact support. The hope is that in this
general framework one might arrive at a class of generalized functions satisfying weaker condi-
tions than (15.53}(15.54); in particular, the generalized functions which increase at infinity no
faster than any linear exponentifl(p)|<C. expe|p| for all e>0 might be included

We point out that all this is realized in HFQF®) In HFQFT there is a more natural relation
between Wightman distributions and Schwinger functibh§4) The two point function
D (x—y)=(é(x)#(y)) has a local singularity of the form

1
[(x—y)?]E- D72

in s>1 space dimension. Thus an infinite power series in this quantity will have an essential
singularity at the origin, and therefore not be tempered. Bw=ifl the local singularity in

D) (x—y) is logx—y)? and so an infinite sum can define a tempered distribution. This is the
reason why in the case af=1 Wick power series can converge in a framework of tempered
fields, whereas in the case ef~1 only Wick polynomials are defined in the framework of
tempered fields. ThugNick ordered entire functions of free fields find a natural formulation in
HFQFT and thus provide a huge class of additional explicit models of quantum fields which are
far more complex than the class of explicit models in standard QB Certain “formally
interacting” models can be treated rigorously in HFQFT but not in standard QFT.

Since the system of axioms for HFQFT is weaker than that of standard QFT, the construction
of a causal net is more difficult in HFQFT. In fact, if we look at the works quoted above we see
that the existence of compactly supported test functions plays a fundamental role in all approaches
to this problem in the framework of standard QFT. Thus at first it seems very questionable
whether this problem can be addressed in HFQFT at all where there are no test functions of
compact support available. But these doubts are based on the understanding that localization can
only be achieved through localized test functions. In HFQFT localization is achieved through the
main objects of the theory, namely through the figlals operator-valued Fourier hyperfunctipns
and their localization properties. Naturally, the concept of localization is more subtle in the theory
of (Fourien hyperfunctions than in Schwartz’ distribution theo(lyocalization of Fourier hyper-
functions is for instance explained in Sec. 2 of Ref. 10 and for hyperfunctions in Secs. 9.1 and 9.2
of Ref. 14.

In this paper we intend to show that it is sensible and promising to address the problem of
defining and constructing local nets of operator algebras in the framework of Fourier hyperfunc-
tion quantum field theory by providing the followingZl) The basic ingredients for the
Bisognano—Wichmann approach to this problgristence and standard properties of the CPT-
operator; HFQFT version of the Reeh—Schlieder theorem; analytic continuation over spatial
wedgesW.. ; identification of the concrete action of the operafoof Eq. (24) and its main
propertie$ and(2) A concrete proposal for the assignment*eélgebras of bounded operators to
open nonempty domains of space-tittvéhich is shown to be local for double coneg3) A
construction of a simple class of models of hyperfunction quantum figltich are not standard
qguantum fieldsfor which the local algebras according to our suggestion are not trivial.

Standard quantum field theory uses the sps(@&*) of rapidly decreasing”-functions as a
test function space, i.e., the fiefl is an operator-valued tempered distribution, more precisely
®(f) is an unbounded operator defined on a dense subset a Hilbert spaceH for all f
e S(R*). On the other hand hyperfunction quantum field theory uses as a test function space the
spaceQ(D* of rapidly decreasing analytic functions defined below.
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An elementu of the dual spac&(D")’ of O(D") is called a Fourier hyperfunction and an
elementy of the spaceC(QO(D"),’H) of continuous linear mappings fro@(D") to H is called a
vector-valued Fourier hyperfunction. Though there are no functions of compact supgygi,
we can define the support of a Fourier hyperfunction as follows:

Let S77! be the o—1)-dimensional sphere at infinity, which is homeomorphic to the unit
sphereS" '={xeR"|x|=1} by the mappingc—x.., where the poink.. e S lies on the ray
connecting the origin with the pointe " 1. The setR"US] !, equipped with its natural
topology[a fundamental system of neighborhoodsgfis the set of all the set®, r(X.) given

by
Og r(X)={EeRM &/ E e, [¢[>RIU{E.;é€Q}

for every neighborhood of x in S"~! andR>0], is denoted byD", called the radial compac-
tification of R". Let Q"=D"XiR" and give it the product topology. Naturallg"=R"XiR" is
embedded iQ". LetK be a compact set iD", {U,,} a fundamental system of neighborhoods of
K in Q" and O(U,,) the Banach space of functiorisanalytic inU,,AC" and continuous on

U,,NC" which satisfy

Ifllm="sup [f(z)|e¥M<ce,
Ze UmﬁCn

Next we introduce the space

O(K)=ind lim ON(U,).

m—oe

Observe tha®(D") is dense iND(K) (see for instance Ref. 15Therefore continuous extensions
are unique if they exist at all. We say that thepportof ue O(D")’ is contained irK if u has

a continuous extension tO(K). The localization of Fourier hyperfunctions can be summarized
by recalling that Fourier hyperfunctions form(#abby) sheaf over space—tinté.

There are two main approaches to construct a net of local algebras from tempered quantum
fields(see Refs. 1, 6, 17 for a survey of these and other attentpte way to define local algebras
{M(0)} for bounded open sef® in R* is to defineM(O) as the set of all ‘bounded functions’
of ®(f) for f e S(R*) with suppf CO. Since the test functions of the Fourier hyperfunctions are
analytic functions, there are no nonzero functions with compact supports. Therefore we cannot
define local algebras for hyperfunction quantum fields by this method. Another definition of local
algebras is that\1(O) is the set of all bounded operators which commute weakly with all field
operators®(f) with suppf CO’ where O’ =int{x e R* (x—y)?<0, VyeO}. This definition
has a counterpart in hyperfunction quantum field theory as we indicate novD bet a dense
subset of the Hilbert spack such that®(f )DCD for all test functionsf e O(D*). Then the
mapping €4,...,f,)—>®(f,) --®(f,)u for ue D defines a vector-valued Fourier hyperfunction
d(xq) - P(x,)u (see Ref. 1h Since there are no nontrivial test functions with compact supports,
we do not use smeared quantiti@gf,)---d(f,)u but instead we use the vector-valued Fourier
hyperfunctionsb (x,)---®(x,)u directly. Since we can define the supports of Fourier hyperfunc-
tions, we define the following set:

L,(0)={XeB(H); VneN,YueD,VveD,
SUPR(X* U, @(X) D (Xp)v) = (P (X)) * -+ B (X1)* U, Xv) ]CD*™M O"}.
L,,(0) is the set of all bounded operators which commute weakly Witlx,)---®(x,) for all

xce O. SinceL;,(O) is not necessarily an algebra, we propose to define an alget{@), for
double cone®, as a subset of, (O').
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Questions of prime importance are: Is the H&{(O)} is local? Is{ M(O)} not trivial? In this
paper we give an affirmative answer to the first question for the family of double cones using the
Bisognano—Wichmann argumefstee Refs. 1, 5, 17

In Sec. Il, we study the vector-valued Fourier hyperfunctid{g,)- - -®(x,)Pq, whered is
the vacuum vector, especially the analytic properties of these Fourier hyperfunctions. As a counter
part of the well-known Reeh—Schlieder theorem of standard QFT we prove Proposition 11.1. In
Sec. IIB we study the analytic properties oh-point functions W,(Xq,...Xn)
=(Dg,P(Xq) - P(x,)Po) and prove the existence of the CPT-operatan hyperfunction quan-
tum field theory. Next, in Sec. Il C we study again analytic properties of

D (Xq) P (Xn) Po.

In particular we prove Proposition 1.7 which is the crucial tool for the following development. As

a preparation, in Sec. lll, modular aspects of the theory for sets of operators over the spatial
wedgesW.. are considered. Compared to standard QFT an additional domain problem has to be
addressedSec. 111 B). This then allows us in Sec. IV to derive suitable characterizations of weak
commutants of field operators localized on wedges. Then, besides a domain problem, we have
prepared the ground for the Bisognano—Wichman route to causality for weak commutants over
wedges and then over double-cori8gc. .

We want to stress that all the results and proofs are valid also in tempered quantum field
theory because tempered quantum fields can be consideredFolmgen hyperfunction quantum
fields.

As it is well known in the case of tempered quantum fitftfsthe nontriviality of the local
observable algebras is a difficult problem which has not yet found a general solution. Our above
remarks indicate considerable additional difficulties in the case of hyperfunction quantum fields.
So, instead of proving the existence of nontrivial local observable algebras in the general case, we
present in Sec. VI a class of examples of hyperfunction quantum fields which have nontrivial local
observable algebras. We proceed as follows.

We construct a hyperfunction quantum field as a Wick power series of a free field which is not
a standard quantum field. We construct the local algebras for this field according to our sugges-
tion. The nontriviality of these local algebras is shown as follows: A standard construction gives
the local algebras for this free field. And it is shown that these local algebras for the free field are
contained in the corresponding local algebras constructed for the hyperfunction quantum field.
This amounts to the statement that the free field we start with and the hyperfunction quantum field
constructed out of it are local relative to each other, in some séwsethink that these hyper-
function quantum fields are in Borchers class of the free field, in the sense of HFQFT; but the
Borchers class, in the sense of HFQFT, of a free field has not yet been detejmined.

II. HYPERFUNCTION QUANTUM FIELD THEORY: ANALYTICITY RESULTS

Naturally we begin by specifying the framework in which we will be working.

By definition hyperfunction quantum fields afeelativistico quantum fields over the test
function spaceE= (D% as discussed in Ref. 10. Here we address only the theory of a neutral
scalar hyperfunction quantum field. For convenience we recall the basic defining assumptions
Hq,....Hs. A quadruple ¢,U,D,®) is called ahyperfunction quantum field theoiff the fol-
lowing conditions are satisfied:

H; Quantum fields as operator valued Fourier hyperfunctionke field® is a linear map
from O(D?*) into the algebrel (D, D) of linear operators defined on the dense suliBaif a
separable complex Hilbert spagé For allu,v e D, f—(u,®(f)v) is a Fourier hyperfunction
and one ha>(f*)Cd(f)*, whered(f)* is the adjoint of the densely defined linear operator
®(f) andf*(z)=1(2) (® is Hermitian.

H, Relativistic covariance: Us a unitary representation @he universal covering group Jof
the proper PoincargroupG on H which satisfies
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U(g)D=D, U(g)@(f)U(g) '=d(fy),

for all ge G and allf e O(D*), wherefy(x)=f(g~'x).
H5 Spectral conditionThe spectrum of the energy-momentum oper&di.e., the generator
of the time—space translations in the representatlgnis contained in the closed forward light

coneV, , where

Vo={(p%p); =p°>|pl}.

H, Causality or local commutativity:If x; and x, are spacelike separated then
D (X)) P(X2)u=D(x5)P(x1)u for everyueD.

Hs Uniqueness of the vacuunThe subspacé{, of translation invariant vectors ift{ is
one-dimensional and generated by a unit vedige D. This vacuum vectof, is also invariant
under the Lorentz transformatioh{ A) and cyclic for the field operatod (f ), f e O(D%), i.e.,

Dy=linspar{®,, ®(fy)---D(f,)Do:fxeO(D*, n=1,2,..}

is dense irnH.
Remark:It follows from the first axiom that for every e D the mapping

O(DY"s (fy,... f)—=®(fy) - D(f)ueD (1)

defines a unique vector-valued Fourier hyperfunctidfx,)---®(x,)u (see Ref. 15 Therefore
we are dealing with well defined vector valued Fourier hyperfunctions in condition

A. Basic analyticity results

Introduce the vector-valued Fourier hyperfunction
Dp(Xg,.Xn) =P (Xq) P (Xn) Po )

and denote the Fourier transform @f,(x;,... ;) by ®,(p1,....pn). Now, in appropriately
chosen variables

n
(A1 An) =X 2(P1,-+-Pn), qk=j§k P,

the Fourier hyperfunctiod®,, has convenient support properties. Consider

Zo=Dpoxy - 3
Then we havdsee Ref. 1D

SUPPZy(Qy, - Gn) C VT @)
If Im ¢ eV, , then

Zo(L1ve k) = 2oy, ) (5)

n

is holomorphic inT". , where7"l ={({1,....{n); Im&eV,, for k=1,...n} and
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Dp(Xgs.eeXn) = Zp(X1, X2 = Xg oo Xy = Xn—1) =Zp( €1, - ,€n)- (6)

Z.(&1,...,&,) is the Fourier hyperfunction which is defined as the boundary valZg(d@f, ,...,{n)

on 7" . It is also the Fourier transform of the Fourier hyperfunctinintroduced above. It
follows that the Fourier hyperfunctiof®) is the boundary value of the analytic function,

Dn(zy,.-4Z20) =Zn(21,20= 21, Zn = Zn-1) = Zp(&1s--8n) (7)

in {(z4,....2,) e C*(21,2,— 21,....Zn—Z,_1) € T".}. The conditionH, of Lorentz covariance
implies for any Lorentz transformatiof,

UA)DP(21,...2,) =P (AZy,....AZ))=Z,(Aq,... ALL) (8

for all (zy,...,2,) such that ¢;,2,—2;,...,2,—2,-1) €7 .
Remark: For z=(2°,...,2%) e (C\R)* introduce the functiorh,e O(D* defined byh,(t)
—112_ e ““29/27i (t~ 2). Then we have

f(t)=L4hz(t)f(z)dz

for f e O(D*), wherel' ="' " +T'~, I'*={z;z= +x+*i 6, — o <x<w} is a suitable path inG\R).

For ue D define a functionF by F(zi,..., zn)=d>(hzl)---d>(hzn)u. Then F(zq,...,z,) is
holomorphic in C\R)*" and represents the vector-valued Fourier hyperfunati¢r,)- - -®(x,)u
as follows:

n 3
<1><f1)---<1><fn>u=L‘mF<z1,...,zn)fl<zl>---fn(zn>j[[1 11 a7 ©)

And we say that ®(xq)---®d(x,)u is the boundary value ofF(z,...,z,). Since
D(hy,)*- @ (hy )*u=D(h})---d(h} )u=F(z,....z,) [where h#(t)=h,(t)=hx(t)], hence
F(z,,....z,) represents the vector-valued Fourier hyperfunctigix;)* - --®(x,)*u, we write

D(x1)* P (Xp)* U= D(Xg)" P (Xp)U (10

and have

ff F@,---Z)fl(zl)‘“fn(Zn)er“d2n=fr4nF(W1,---,Wn)f’I(W1)'“fﬁ(Wn)dWr"de-

4n
In this notation we have in particular
D(Xq)* P (Xp)* Po=DP(Xp) - P(Xp) Po=DP (X, ... Xpn). 11

With these basic analyticity properties we are well prepared to derive the main result of this
section, an analogue of the much used Reeh—Schlieder theorem of standard QFT.
Proposition 11.1 (HFQFT ReekSchlieder): Let |} (n=1,2,..) be open nonempty setsRf"

and u a vector ofH. If (u,Z,(é;,...,£,))=0 [respectivel(Z,(¢1,...,€,),u)=0] in U, as Fou-
rier hyperfunctions for r=0,1,2,...(we use here g=®,), then u=0.

Proof: Since (1,Z,,({1,--.,¢n)) [resp. €n(1,--.,¢n),u)]is holomorphic in7"} (respectively,
in7") andU,, is open inR*" we get (1,Z,(1,...,{n)) =0 [respectively Z,({1,...,{n),u)=0]in
7" (respectively, in7") by edge of the wedge theore(see Theorem 5.1 of Nagamachi and
Nishimurd?). Therefore (1, ®(f;)---®(f,)Po) =0 (respectively, ©(f;)---®(f,)Po,u)=0) for
any f,e O(D% for n=0,1,2,... . By conditiorHg this impliesu=0. O
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B. Existence of a CPT-operator

There are several useful representations ofrttpmint functions)V, of the theory,
Wh(Z1,--Z0) = (P (Zk s 1Z0) P (Zks 15 1Z0))
=(Dg,P(21,..120)). (12
By translation invariance expressed in the foff the last term is equal to
(P9,Zn(21,20—24,...,20—Z1—1))

and thus it follows from the translation invariance of the vechgy that this quantity does not
depend orz; when({,=z,—2z._, is fixed fork=2,...n, and is denoted bW, _, i.e.,

Wn(zl!'"1Zn):Wn71(§21"'!§n)- (13)

The functionW,,_; is holomorphic in7"7"* and invariant under the proper Lorentz group

since the vectorP is invariant under this group. We recall now some well-known results from
standard QFT about the analytic continuation of theoint functions. Since these results are
based purely on analyticity arguments they apply in our context too. Accordingly the function
W, _; is analytically continued to a single valuéd (C)-invariant function\fvn_l which is ana-

lytic in the extended tube

_ -1
Th-1=UncL, AT}

by the Bargmann—Hall-Wightman theoréiZ/,_, contains real points called Jost poiftsThe
Jost theorer? says that a real poinf, ...,p,) belongs to7},_, if, and only if, the convex cone
C(p,-..-,pn) generated by,,...,p, contains only spacelike points. According to these results the

n-point function, is analytically continued to a function, which is analytic in
Sh={(z1,....20) e C*™zy— 2 1= Lk e Th_q}-

ConditionH, (local commutativity implies that), is analytically continued to a function/®
which is symmetric and analytic iﬁrf, the union of all domains generated fra$ by arbitrary
permutation of variableg,,...,z,.

A certain weaker version of the locality conditibhy, called weak locality has found a number
of successful applications in standard QFT because it can be characterized by a simple symmetry
property(14) of the n-point functions. Since the proof of this characterization relies on analyticity
arguments only it applies to HFQFT too, as we are going to show. First we recall that a hyper-
function quantum field is calledreakly localiff for all n and all real pointsi(s,...,r,,) in S, the
relationWy(r1,....Fn)=Wp(rn,....r1) holds. The announced characterization of weak locality is
given by the following theorem:

Theorem 11.2: In a theory characterized by conditions;HH; and Hg weak locality is
equivalent to the following symmetty4) for the n-point hyperfunctionsV,,, for all n=2,3,..,

Wa(X1, oo X)) = Wh(—=Xnyee ey = X)) =W (= X100, Xp). (14

Proof: The arguments of Chap. V of Ref. 19 apply. O
Corollary I1.3: The npoint functions of a hyperfunction quantum field theory satisfy the
symmetry relation$14).
Proof: The conditionH, of local commutativity implies weak locality. O
Theorem 1.4 (TCP-Theorem): A theory(H,U,D,®) characterized by conditions HH4
and Hg is weakly local if, and only if, there is an antiunitary operat®on H with the properties
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OPo=Dg, OP(fy) D (f))Po=D(fy) - P(f,)Po, (19

where { (z)=f,(—2). This antiunitary operator is called TCP-operator. It satisfies

6°=1, 6U(a,A)0=U(—a,A) on H, (16)

0D (f)6=d(f7) on D. a7

Proof: Since Theorem 11.2 is established, the standard pragiplies. O
Corollary 11.5: A hyperfunction quantum field theory has a TCP-operator

Proof: Use Corollary I1.3 and Theorem 11.4. O

C. Analytic continuation over spatial wedges (Bisognano—Wichmann analyticity )

In the following we assume that a hyperfunction quantum field thetiJ( D, dP) is given as
specified at the beginning of this section. We use the notation and the results from the previous
sections without referring to them explicitly. Consider the following 1-parameter subgroup of the
Lorentz group

cosht sinht 0O O
sinht cosht 0 O
1o o 1 0f<®
0 0 0 1
and
-1 0 0 O
0O -1 0 O
g—_vi'n'_v—iﬂ'_ 0 0 1 0
0 1
Then

V(t)=U(vy)

is a l-parameter group of unitary operators in the Hilbert sgdcevhich has a self-adjoint
generatorL. Thus, by functional calculus, we have an analytic continuatiol' (@j to V(7), 7

e C. Clearly, whenr does not belong t®, the linear operator¥(7) are unbounded. Following
Bisognano—Wichmari we will be able to give suitable domains for these unbounded operators
and to identify their action. Relatio8) implies

V(t)zn(gly---agn):Zn(gl(t)v---agn(t))a (18)

where{(t)=v{, forallte Rand all ¢4,...,¢,) € 7"} . Recall thaZZ,, is holomorphic or7"} . For
=i\, € R we calculate

Im £(ix)°=1m ¢° cosh +Relt sink,
Im Z(iN)r=1m ¢* cosh + RePsin,
and introduce the spatial wedges

W. ={xeR* +x>|x%}, (19
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and the following subcone of the forward light-co¥e ,
VE={(n" " 2. n®) eV n?=7°=0}

Then, for = &+i 7 such that RéeW. and Im{,eV2 we have Iy (i\) eV CV, for +\
e[0,7/2] and thusZ,({4(iN),...,{,(IN)) is well defined. This allows to deduce the following
lemma.

Lemma 11.6: (a) Let{,e 7. be such that{,(i\) e 7, for =\ e[0,7/2] and k=1,...n, then
Z,(¢1,-..,¢n) edomV(iN) and

V(N Za(L1,--8n) =Za(£1(IN), . 00 (IN)) (20

as an identity between vector-valued analytic functions
(b) Whenim £,eV° andRe{,eW. , then{(i\) e T, for =\ e[0,7/2] and the conclusion of
(a) applies
Proof: The proof of the Lemma 8 of Ref. 17 works without modification. O
Now, the main results of this subsection are given in the following proposition.
Proposition 11.7: As identities between analytic functionséi (&,,...,&,) € W the follow-
ing holds:
(@) If ® edomV(xim/2), then

M(£iml2)®D,Z,(&1,...,60)) = (D, Z(&1(Xi712),... . 0(£i7/2)), (21

and

(D,Z0(9-&1,...9-&))=(V(=i72) D, Z,(E(xim/2),....E0(xi7/2)). (22
(b) If ¥ edomV(=i), then

(V(iiW)‘lf,Zn(gl,...,§n))=(‘I’,Zn(g_§1,...,g_§n)). (23)
(c) Define
J=U(0R)¥, (24

where 0 is the CPT-operator of Theorem 1.4 and R the Euclidean rotationmbground the
xt-axis. If ¥ e domV(*im), then

(V(=im)W,Zy(E,.0) = (V02061 ). (25)
Proof: For Im{ke\/ﬂ and ¢, =Re{,eW.. we know by Lemma 1.6,
M(=i72)D,Z,(Lq,..,Ln) = (P, Z(L1(Xi7I2),... . n(Ei72)). (26)

The left-hand side of26) is holomorphic inR*"+iV'} and it defines a hyperfunction dR*".
There exists a neighborhoddl of é=(&,,...,£,) in W and8>0 such that the right-hand side of
(26) is holomorphic inU+iV'} ;andU—iV'} 5, whereV, s={neV. ;°<s}, and it defines a
hyperfunction onU (see Theorem 4.4 of Ref. 18Since both sides 0f26) coincide in U
+iV1'5, they define the same hyperfunctionlin Sinceée W' is arbitrary, by the localization
(sheaf property of hyperfunctions, Eq21) holds inW'". as an identity for hyperfunctions.

The left-hand side of21) is a boundary value fronR*"+iV'l , and the right-hand side a
boundary value from both) +iV". ;andU—iV'} ;. Hence, by the edge of the wedge theorem,
both sides are analytic id. Again, since¢ e W' is arbitrary, we deduce that E1) holds as an
identity for analytic functions.

Now Eq. (22) follows from (21) and the following chain of identities:
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(P,Z,(9-81,....9-80)) =(V(Zi7m/2)®,Z(g-&1(Fi7/2),....9-En(Fi7/2))
—(V(2im2)®,Z,(E(2iml2), ... &(Ziml2)).

From spectral calculus we know that ifPedomV(*iw) then V(xi#/2)¥
edomV(xiw/2) andV(=i#/2)V(xiw/2)¥ =V (xim7)¥. Thus Egs.(21) and(22) apply and
yield

V()W Z(Eq ) = (V(Zi )W, Z(E( i 712), ... En( i T/2))

:(\P!Zn(g—gll"'ig—gn))-

Thus part(b) follows.
According to Sec. II B, the operatdr=U(0,R) 6 has the following properties:

J2=1, Jby=d,, JPX)I=D(g_X), (27
JU(a,A)J=U(g_a,g_Ag_), JV(1)I=V(1) (28
for all te R. Now it follows from (23), for all (£4,...,&,) e WL,
(V(=Im) W, Zn(&1,---60)) = (¥, Z0(9-£1,-..9-€0))
= (¥ ID(Xy) B (Xp) Do) =(¥,IZ(&1,...&n)),
and we concludéc). O

. MODULAR ASPECTS

In standard QFT the modular theory for tie -algebraP(W..) on D generated by the field
operatorsb(f ), f e S(R*), suppf CW.., is fully developed. The maps

XCI)O—>X* (DO y Xe P(Wi)
are closable and their closur8s satisfy
S, =S =JV(im)

(see Theorem 4.52 in Inotfé.

Here, in HFQFT we develop certain aspects of this theory, needed for the proof of locality of
our assignment df-algebras of bounded operators to the wed@yes. We are going to show that
in our case too these maps are implemented as above.

A. Modular relation

For A e R introduce the subspace
Dy(N)=(1+V(iN)) " *H

and observe that fox >0 (resp.A<0), Dy(\) is a core for allV(7) with 0<<Im 7=\ (resp. 0
=Im 7=\). For allue Dy(\) the function7—V(7)u is strongly continuous and bounded in 0
<Im <<\ (resp. C=Im 7=\) and analytic in the interior of this set. The operatdifsr), = as
above, are transformed under the operdtarf Eq. (28) as follows:

JIDy(N)=Dy(—N\), IV(7)I=V(7),
and

JV(W.)I=V(W-).
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DenoteD. =Dy(= ) and define
A.={XeB(H); X®yeD.},
VW) ={Xe A.; V(FimXDy=IX*D}. (29
The following two propositions provide important details about these sets of operators.
Proposition 111.1: (@) W (W_.)®y=D. .
(b) Whenever X,X,e V(W..) satisfy the condition ¥/ (t)X5V(t)* e (W..) for all teR,
then
X1(IXD) P o= (IX D)X, Dy (30)
Proof: Forue D.. define, for allv e H,
Z.(Wu=u(®y,v)+Py(IV(xim)u,v)—(Pg,u)(Pg,v)Dg.
Clearly, Z..(u) are bounded linear operators & and forv =®, we have
Z.(U)Po=U(Pg,Pg) +Po(IV(Eim)u,Pg) — (P, u)(Pg, Do) Po=u.
In order to determine the adjoints of the operatdrqu) we calculate for alw, v e H,
(Zo(W)*w,v)=(W,Z.(u)v)
=(wW,u(Pg,v)+Dy(IV(ximu,v)—(Pg,u)(Pg,v)Dy)
=(W,u)(Pg,v) + (W, Do) (IV(£im)u,v) = (W, Do) (Po,u)(Po,v)
= ((W,u)@g,0) + (W, o) IV(£i m)u,v) (W, D) (Dg,u) Do v)

It follows, for all we H,

Zo(u*w=(w,u)Dy+ (W, D) IV(Eim)u— (W, Do) (Py,u)dy,

and therefore

Z.(W)*Po=(Dp,u) Do+ (Dg, Do) IV(Zim)u— (Do, Do) (Po,u)Po=IV(£im)u.
This shows thaZ.. (u) e V(W..) andV(W.)d,=D- and thus proves pafth).

In order to prove partb) let X;, X, V(W..) be given which satisfy the hypothesis of part
(b). Then we know, withX=X;V(t)X3V(t)*, teR, thatV(xim)XPy=IX* O, holds. Thus we
have
By the same argument fo¢=X; and X=X, we deduce

V(£im) X V(D)IV( =i ) Xo® o= IV(H) X, V(1) * IV( £ i) X, Do

Finally we employ the relations of Sec. Il C betwekandV(t) and the group properties &f( 7)
for complexr and get

and
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Now take any¥ € H and a cutoff functiorc e D(R) and consider the three vector-valued func-
tions with complex variable,

These functions are strongly continuous on the closed stdp-0m 7<. The first two functions
are analytic in 6<=Im 7< and the third is entire analytic in. Therefore the function

f(r)=(V(T=imc(L)P, X IV(TEim)Xo®g)— (c(L)W,IXIV(+i7m— 7) X, D)

is continuous in 6= = Im 7= and analytic in &< = Im 7<. By Eq. (31) we knowf(7)=0 for all
real 7; it follows f(*=i7)=0, i.e.,

(C(L)\P, X]_JX2(I)0) = (C(L)‘P,JXZ\]X]_(I)O)
Since ¥ e H and ce D(R) are arbitrary, we haveX;JX,J®y=JIX,JX;P,. This proves part
(b). O
Proposition 111.2: An operator X A.. belongs to the sef(W..), i.e., it satisfies the equation

V(i|7T)X(D0:JX*q)O

if, and only if, for all n=1,2,..,
(X* D, Zn(E1, ) = (Zn(€xs- - En) XPo) e (32

Proof: Assume first thalX e V(W..) is given. For allé=(&,,...,&,) e W2 we obtain, using
V(xim)XPy=IX* D, and the relations fod from above,

(X* D, Zp(8))=(IV(Zim) XD, Zn(§)) = (V(Fim)IXD(,Zn(§)).
Now Eg.(25) implies that this equals
(IXDg,IZn(€))=(Zs(£), XDy).

Hence relation(32) is necessary.
Conversely assume that is a bounded linear operator @i for which relation(32) holds.
SinceX®,e D, we can usd25) and get from relatior{32)

(X* D0, Zy(£1, o én)wn = (Zn(E1, - ) XPo)un

=(IXPg,IZn(E))jwn = (V(F17)IXPo, Z,(€))jwo -

Hence Proposition II.1 implies
X*Dy=V(Fim)IXDPy=IV(Fim)XDg.

Therefore condition(32) is sufficient. O

B. Growth restriction and the domain problem

The temperedness of the distributions allows to show in standard QFT that the condition
X®dyedomV(=xia) follows from condition(32). The proof relies on the fact that compactly
supported testfunctions are available.

Compared to tempered distributions Fourier hyperfunctions can grow much stronger. Accord-
ingly we impose amild) growth restriction on our theory. This growth conditifsee Eq.(37)]
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allows us to control the domains of the operatdf6+im) and then we are able to prove
L, (Wz)CA. . This control of the domain is achieved by using a suitable rapidly decreasing
cut-off function,

f(t)=cexp—cosht), (33

wherec>0 is a number such that

ficf(t)dt=1.

For u>0 denote

f(0)=nf(ut).

Lemma I11.3: LetO<e<a/2u. Then the Fourier transform

?H(p)Zf eP'f ,(t)dt
of fM is an entire function which satisfies the estimate

[T.(p)<M(e,n)e P (34)
for some Me,u)>0, and

T.(p)—1

as u—oo for every p
Proof: The identity

|f,(t+is)|=cu exp(—coshut cosus)
follows from the equality
f,(t+is)=cu exp(—coshut cosus—i sinhut sinus).

If |s|<#/2u thenf ,(t+is)—0 decays faster than exponentiallytas + . Therefore'f#(p) is
an entire function op. Sincef ,(t)— 6(t) asu—x,

Tup)—1

asu— for everyp.
Let 0<e<w/2u. Then

|e*FF ,(p)| = (2m)

f eP(t=19f (t)dt

:(277)1’2J'e‘ptfﬂ(t1ie)dt’<oc

and we have

ﬁ,u(p)|$|\/|(e,,u,)e—f\p|

for someM (e, u)>0. ]
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Lemma lIl.4: Let \(t)=e"". Then, for all x>0, V(iie)~fM(L) is a bounded operator for
e<ml2u.

Proof: It follows from (34) that |ei€pT#(p)|sM(e,,u,). Therefore, by spectral calculus,
7#(L) mapsH into the domain oV (=*ie) and

[}

V(iieﬁ“(L)=fﬁweif‘rfﬂ(p)dE(p)

is a bounded operator, wheE£p) is the spectral measure of the self-adjoint operator [
Recall the definition of the vector-valued Fourier hyperfunctions,

Zn(€1,.00i€n) = P(Xo) P (Xq) - P(Xn) Do

with §=x;—x;_4 for j=1,...n. It is the boundary value of a slowly increasing vector-valued
holomorphic functionz,(¢) in the forward tube{=({,...,{n) € 7 '} which, by Lorentz covari-
ance, satisfies the relation

V(1) Z,(§)=Zn(£(1)) (39

for e T, and {(t)=v{. Both sides of Eq(35) are holomorphic functions o'} , thus they
define the same Fourier hyperfunctions. So, we denote

V(1) Z,(£)=Zn(£(1))

with {(t)=v{.

Lemma 111.5: Suppose X is a bounded operator?@rfor which the two Fourier hyperfunc-
tions (X* ®q,Z,(£)) and(Z,(£),X®P,) coincide on some open nonempty set ®RfA. Then both
Fourier hyperfunctions are actually analytic functions in O and coincide there as analytic func-
tions

Proof: Z,(¢) is a vector-valued slowly increasing holomorphic function in the backward tube
7" and defines a Fourier hyperfunctidn(£) on R*". From our assumption it follows that the
two Fourier hyperfunctionsX* ®,,Z,(£)) and Z(£),Xd,) coincide inO. By the Edge of the
Wedge theorem for Fourier hyperfunctiwe conclude. O

With the notation introduced in Sec. Il A we define

VW) ={XeB(H);X®oe D, and V(=im)XDy=IX* Do}

and formulate the main result of this section.
Theorem 111.6: If for a bounded operator X oft{ one knows for all n

(X* D, Zn())jwn =(Zn(£) XPo)jwe (36)
and if for every n there are non-negative constants &nd K, such that
|(X* D, Zy(£(1)))] =[(Zn(E(1)), XD ) | <M ekn M, (37
then Xe W(W..).
Proof: According to the preceding lemma we know that the growth restrid®dh for ana-
lytic functions is meaningful even if the coincidence relati@®) is originally assumed in the

sense of Fourier hyperfunctions.
We employ the cut-off function$, introduced above and show in a first step

(Fu(L)X* Do, Z(8))jwn =(Z(€),F (L)X Do) jwn
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for large . To begin, observe that the properties of the cut-off function and the growth restriction
(37) imply that the integrals

f f () (X* Do, Zy(£(1)))dt and ffﬂ(t)(zn(g(t)),xq)o)dt

exist if u>1, and we have
(FLLX*0.2,(8) = [ 1,00M(0X @o.Z,(8)a
- [ 000 @0 2yt
=f fL(0(Z(E(1)),XPo)dt

= f fL(D(Z(€), V(D)X dt=(Z,(€),T ,(L)XDy),

where we used the coincidence relati@®6) in the third equation.
In a second step we show that

(FL(L)X* Do, Z,(£(1))  and  (Zy(£(1)),T,(L)XDy)

are bounded functions dfe R: It follows from Lemma 1ll.4 that the vector]"sﬂ(L)X*CI)(J and
T#(L)XCIDO belong to the domain of the operatoy§ *=ie) for 0<e<m/2u. Since &(+ie€)

eT if EeWL, Z,(&(Fie)) is a well defined vector irt{. By part (b) of Lemma 1.6 the
following is known: If §j=§j+i77jewi+ivﬂ for j=1,..n then, for allteR, Z,({(t))
cdomV(Fie) andV(Fie€)Z,(£(1))=Z,((tFi€))=V(t)Z,(Z(Fi€)). Thus it follows

V(=TT (L)X Do V() Zn(4(Fi€))) = (V(Zie)F ,(L)X* Do, V(Fie)Zn(£(1)))

= (FL(L)X* o, Z,(L(1))).
Observing Lemma 111.5 we can take the limjt—0 and get the identity
(Fu(L)X* Do, Zo(E(1))) = (V(£i )T ,(L)X* P, V(1) Zy(&(Fi€)))
and hence
|Fu(L)X* @0, Zo(£()|<[V(£i )T L(L)X* @llIZo(&(Fi €]

for all t e R. Similarly one proves the boundedness of the second funcigrg(t)), T ,(L)X®,).

In a third step we use another cut-off functiofp) € Dr(R), i.e., a real valued€”-function
with compact support, and show

(C(L)FL(L)X* @0, Z,(8) = (IV(=im)c(—L)IT(L)XDo,Zy(£)).

Let

é<t>=<2w)-lf e~ "Pc(p)dpe S(R)
R
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be the inverse Fourier transform ofp). Then c(L)J~fM(L)X<I>OedomV(1i77) and, by the
previous step, the integrals

fRé(t)(7M(L)X*%,Zn(é(t))dt and fRé(t)(Zn(E(t)) Fu(L)XDo)dt

exist. Thus we have for afe W2 ,

(C(L)T L (L)X* Dy, Z, (€)= JR<é<—t>V<—t)h(UX*fPovZn(f))dt
. JRm)GM(L>x*<1>o,v<t>zn<f>>dt
=fRé(t)(NfM(L)X*(I)O,Zn(f(t))dt
- | s @@ Funxegar

- fRéu)(zn@,w—t)h(L)xcbo)dt

=(Z(€),c(—L)T ,(L)XDg)=(Ic(—L)T L (L)XDg,IZ,(€))
=(V(Fim)Ic(—L)T ,(L)XDg,Z,(€))
=(IV(=im)e(—L)T (L)XDg,Z,(€)),

where we used the relationy *i7)J=JV(*is) and
(V,3Z,(€)=(V(Fim)V¥,Z,(§))

for ¥ edomV(=im) (see Proposition I1)7 By the Reeh—Schlieder theorem for hyperfunction
qguantum fieldgProposition 1.2 we have

c(L)T ,(L)X*Do=IV(=im)c(—L)T,(L)XD,.

The final step removes the cut-offs. Letp) € Dr(R) such thatc(p)=1 for |p|<1 and
introducec ,(p) =c(p/u) for u>0. Then we have, ag—,

(LT (L)X* Dy X* Dy, C,(—L)T,(L)XPo— XDy.
Thus the relation
Je, (LT (L)X ®o=V(=im)c,(—L)T,(L)XD,

for all sufficiently largew and the closedness of the self-adjoint operaitfsi«) imply X®,
edomV(xim) andV(xim)XPy=IX* D, O

IV. WEAK COMMUTANTS OF FIELD OPERATORS

Let (H,U,D,®) be a hyperfunction quantum field theory. Rarv e Dy, n=1,2,.., andX
€ B(H) define the Fourier hyperfunction

Wiin,u,o(X1se0Xn) = (XFU,P(X) - P (Xp)v) = (P (Xp) P (XU, Xv). (38)
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If this Fourier hyperfunction vanishes on an open@&tOCD?, i.e., if Uy., , ,|O"=0, then this
means intuitively that the operatdr commutes weakly with the field operators localized@n

To any open nonempty s€tin D* we assign the following set of bounded linear operators on
the state space(:

Ly(0)={XeB(H); Vx.nu,/O"=0, Yu,veDy, VneN}
={XeB(H); supp¥yx.,u,CD*™MO", ¥nel, Yu,veDy}. (39

These set<,,(O) will be our starting point for the assignment of algebsa{O) to nonempty
sets of space—time. In ca€keis a wedge/N.. or a double cone we will be able to show the locality
of this assignment.

Clearly, a much simpler and more natural definition would be to consider all those bounded
operators orfi{ which commute weakly withb(x), xe O as it is done in standard QFT. In this
section, by relying on some recent progress in the theory of Fourier hyperfunctions we show that
actually the two definitions agree. To this end we introduce

L'(0)={Xe B(H);YueDy,Yv e Dy,
supf (X*u,®(x)v) — (P (x)*u,Xv)]C DN\ O}

and show. ;(O)=L'(0O).

Recall the following general form of Schwartz’ kernel theorem for Fourier hyperfunctions
(Theorem 3.2 of Ref. 21

Theorem IV.1: Let K; be a closed subset & for i=1,2,..,N. Then, for every separately
continuous Nlinear form B on G= O(K ;) X---X O(Ky) there is a unique Fourier hyperfunction
Fg on Ky X+ XKy, i.e, Fge O(K;X---XKy)" such that for all(g4,...,.gy) € G,

B(g1,....9n)=Fg(g1® - ®QgN).

We have to comment on this resui; X ---X Ky is a subset oD*1x---x DN, but not of D",
n=2i’\‘:lki, in general. Accordingly elementg e O(K,X---XKy)' have to be considered as
elements of (1T, D )" with support inK,x---XKy. But hyperfunctions im variables are
defined onD", the radial compactification dR"; and in this sense we need the above result.
However we can choose a fundamental sequence of neighborfidg¢igresp{V,,}) of D" (resp.
Y. ,DN) such that U,NC"=V,,NC"={zeC";|ImZ<1/m}. Thus we deduceO(D")
= (11 ,D%) and consequenthy@(D")’' = O(II'L ,D%)’ thoughD"=#I1}\_, D

As a further preparation we prove

Lemma IV.2: Let O be an open setRt. Then,

(,?( D4n\on) — Q((D4)n\on) (40)
Proof: Let
On={xe O;dist(x,d0)>1/m}.

ThenR*™ O (m=1,...) is afundamental system of neighborhoodsRf™\ O" in R*". Since
D*M\R*"'=S!""1 we can choose a fundamental system of neighborhabgdsm=1,...) of
DM O" in Q*" such that

Un,NC*={xe R";|x|>m}UR*™ O} +i{y e R*";|y|[<1/m}.

Since @)™ R*'=U_;(D*I"*x S3 x (D"}, we can choose a fundamental system of neigh-
borhoodsV,, (m=1,...) of (D)™ O" in (Q*)" such that

VN CH'= UL R Dx {x e R%||x[[>m} x R* M DUR*™Of +i{y e R% [y < /m}".
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Since for anym; there existan, such thatU,, DV, (resp.Vy, DUy, ), we have(40). O

Corollary 1V.3: A Fourier hyperfunctionu(e O(D*")’ =O((D*")") which vanishes in ©
belongs to@(D*™ 0"’ =O((D*™ O")'. Thus we have the following interpretation of the sup-
port of w:

suppuCD*™MO" and supguC(D*)™O".

Proposition IV.4: Supposeq{1,...n} and t is a separately continuous-inear form on
O(DH U~ Dx O(D*) x O(D* ™~ which, for fixed fe O(D*), i#] has a continuous linear ex-
tension 'lgfi;#j}(fj) to f;e O(Kj), KJ-CD4 closed. Then;thas an extension to a separately
continuous Alinear form T, on O(D*)U~x O(K;) x O(D*) ("1,

Proof: We have to show that for fixeti e O(K;),

{fisi# it = T i (f)

is a separately continuous ¢ 1)-linear form onQ(D*) "~ ). By Theorem 2.7 of Ref. 10f;
€ O(K;) is the limit in O(K;) of a sequencég,}y.x in O(D*. Thus we get the following limit
representation of the above functional,

T{fi |¢]}(f1)=k||m tj(f1®"'®fj_1®gk®fj+1®' ®fn)

For eachk, by assumption;(f,®---®f; ;®g®f;,,®---®f,) depends continuously ofy
e O(D* for eachi+j; and O(D* is known to be a barreled space, hence by the Banach—
Steinhaus theorem the above limit depends continuousli; (D), i #j. ]
Now we are prepared to prove the main result of this section.
Theorem IV.5: If O is an open nonempty set Bff, then £, (O)=L"(0).
Proof: In the notation introduced i(88) the setL’(O) is characterized by

L'(0)={Xe B(H); Wx.1,,/0=0, Yu,ve Dy}
={XeB(H); supp¥x.1,,CD"O, Vu,ve Do} (41)

Thus it suffices to show for a bounded operaxoon H: If
supp¥y.1,,,CDNO, Vu,veDy,
then
supp¥ x.n.u.,CD*™MO", ¥neN, Vu,veDy.
Observe first that for alf; O(D* the following relation holds:

Yiinuo(f1@ @ F0) =Wty act,)--a)o(F) T ¥cro¢, pra@ ) uu(fn)
n—1

+ ;2 ‘I’x;l,é(fj,l)*m@(fl)*u,q>(fj+1)-~-<1>(fn)u(fj)- (42)

Clearly, the summands of this relation are separately continndirear forms on®(D*){ -1

X O(D* x O(D* ("1 and by Proposition IV.4, iX e L' (O), have extensions to separately con-
tinuous n-linear forms onQ(D*) U~ Yx O(K;) x O(D* ")), where K;=D*O. Now we can
apply the kernel theorem to conclude

n
wx;n,u,v<fl®---®fn>=j§1 Ti(f18®f,) (43
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with
T,eO(D*)’ and supd;CD*I~1xK;x D0, (44)

It follows

n
Suppq,x;n,u,v(xl yeee ,Xn)C U(D4)j_1X(D4\O) X (D4)n_j
j=1

=(D4)“\rn1(D4)i*1><o><(D4)"*J =(D*)™O".
=1

Finally we apply Corollary V.3 to conclude
SUPPY .1 uo (X1, - Xn) CDMO",

and thusX e L,,(0O). O

Corollary 1V.6: (a) For any open nonempty subset ODf, £/,(0O) is a *-invariant linear
subspace of th&-algebraB(H) of bounded linear operators on the Hilbert spake It contains
the identity of B(H).

(b) The assignment © L, (O) is antimonotone, i.e., if @O, thenL,,(0,)C L, (0,), and
it is

(c) Poincarecovariant, i.e,

U(9) L (0O)U(g)*=L(g-0),

for all ge G and all open nonempty subsets@*.

(d) For any open nonempty subsets @ D* one has(,(0;)NL,,(0;)=L(0;U0,).

Proof: The Fourier hyperfunctio?y., , , depends linearly oX e B(H), thereforel, (O) is
a linear subspace. By Hermiticity of the field we knd., , ,=0, hence this subspace contains
the identity leB(H). A straightforward calculation shows Wy« .y, (X1,....X,)
=Wy.nuo(X1,...Xp). Since a Fourier hyperfunction and its complex conjugate, defined by
w(f)=pu(f*), have the same support it follows th#t« ., , , vanishes of©®" wheneve¥y., ,, ,
does. This proves pafh).

Part(b) is obvious from the definition.

Concerning Poincareovariance we observe first

‘PU(g)XU(g)* ;n,u,v(xl 1 an) :qfx;n,ug ,vg(971X1 (R vgilxn)

and note that withi, v alsoug=U(g *)u andvy=U(g *)v belong toD;.
Part (d) follows from the identity £,(O)=L’(0O) and the relationL’(O;)NL'(O,)
=L'(0,U0,) which is obvious from the definition. Thus we conclude. O

V. CAUSALITY FOR WEDGES AND DOUBLE-CONES

As the above corollary shows the weak commutahfgO) are known to be just-invariant
linear subspaces of thealgebra3(#+) of bounded linear operators on the Hilbert spatef our
theory. For the wedged/.. we will introduce a certain class of “admissiblé™algebrasM (W-.)
on’H and for a certain subclass, relying on the results concerning modular aspects, we will be able
to show locality. This then is used in the second subsection to derive locality for double cones.

A. Causality for wedges
At first we study in some detail the sef§ (W), and relate them in particular to the sets

V(W..) of Sec. lll. If the growth restrictior{37) of Theorem II1.6 is taken into account we get
results which are analogous to standard QFT.
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Proposition V.1: In a hyperfunction quantum field the¢ty,U,D,®) the following relations
hold for the spaces introduced above:

(@) Ly(Ws)NALCY(W..),

(b) ILo (W)= L},(W5),

(€) V() L,,(WL)V(t)* =L, (W.) for all teR,

(d) Under the assumption of the growth condition (37) of Theorem I11.6, (a) can be sharpened
to L,,(Wz) CV(W.).

Proof: We denoteO+={(Xy,....Xn) € WL ; &=X, 11— Xe W5 }. Observe the fact that,

X] =2ik=]-+1§i e W for k>] and thatx, andx; are spacelike separated. For aXy L, (W-)

one has

(X*q)mzn(fl,---afn))|wgz(X*(I)an)(xl)'"(b(xn)q)o)\oI
= (D (Xp)* - D(X1)* P, XPg)|0_
=(D(X1) P (Xp) P, X Do) 0

=(Zn(£1, -+ En) XPo)wn -

By Proposition I11.2 we deducX € V(W..). This proves parta).
Antiunitarity of the operatod implies (JXJ)* =JX*J and thus, using the known transfor-
mation properties of the field under the operalawre calculate

\I,JXJ;n,u,v(Xl yee ,Xn) == ‘PX*;n,Jv,Ju(g—Xl yeee :g—xn)-

Since the domaiD, is invariant under the TCP-operatérit follows that this domain is also
invariant under the operatdr=U(0,R) 6. Sinceg_W. =W we see that ;y;,, , vanishes on
W for all u, v e Dy andn=1,2,... wheneveK e L, (W.). We concludel £, (W.)JIC L (W5),
and thereforeC, (W.)CJL,(W+)J. This implies the identity stated in pa(th).

In a similar way we prove paic). Using the covariance properties of the field we calculate

Wy oxvity*:mue (Xt Xn) = Vs n vi-tyuvi— o (VU - X1, -0 —Xn).

SincevW.=W.. and since the domai®, is invariant undeN(t), teR, it follows, for all t
eR, V)L, (WL)V(t)*CL,(W.), and thereforel, (W.)CV(—t)L, (W.)V(—t)*. This
proves the identity of parfc).

If the growth condition is assumed then by Theorem 111.6 we kn@y¢W;)C A. and thus
(d) follows from (a). O

In general,£,(O)N.A.NA% is only a*-invariant subspace but not*aalgebra of bounded
operators on the state spake For the special cas®@=W.. we will propose some choices for
such a*-algebra which will finally enable us to assi§ralgebras of bounded operatokg(O) on
‘H to all double cone® and this assignment will satisfy the condition of locality.

For O=W.. we proceed as follows. First we introduce a certain clas$-afgebras orH
which we call “admissible.” Then for a certain subclass of these admis3ialgebras assigned
to W.. the locality condition will be shown.

Definition V.2: Let('H,U,D,®) be a hyperfunction quantum field theory. A pait(W..) of
*-algebras of bounded operators on the state spHds calledadmissibleif it has the following
properties:

(A1) M(W.)CLY(W:)NANAL,
(Az) IM(W.)J=M(W5),
(Az) VO)M(W.L)V(t)* = M(W.) for all t e R.
Under the growth conditiori37) the right-hand side ofA;) is £,,(W-=).
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Since the identity operator belongs ,(W;)N.A.NA% the trivial *-algebra is always
admissible in this sense. We will see latBroposition V.5 there is another construction to obtain
admissible* -algebras.

As the following theorem shows an admissible pair*edigebras satisfies the condition of
locality, under the assumption of a strong technical condition, as in standard QFT.

Theorem V.3: If in a hyperfunction quantum field theo(¢{,U,D,®) the spaceM(W.)d,
is dense in the state spa@¢ then the following assignment

W.— M(W.)
is local, i.e,
M(W.)CTM(W3)".

Proof: Because of properth; and sinceM(W..) are*-algebras we know for any tripl&; ,
X5, X5 of its elements and for atle R,

XVOXEV(D* e M(W.)  and X XaV(H)XEV(D)* e M(W.).

By PropertyA; we know M(W.)CWV(W-) and thus Proposition Ill.1 applies. Pdk) of this
proposition therefore implies the following chain of identities:

JXZJX1X3®O: X1X3J qu)oz (XlJ)J X3J qu)oz XlJ X2J X3q)0 .

Since{X3®dy; Xze M(W.)} is dense, this equation impli¢X,,JX,J]=0 for anyX,, X,

e M(W.), thus M(W.)C(IM(W.)J)'. Now we conclude by Propert4,. O

We prepare our discussion of a special way to obtain an admissiblé-pdgebraM,(W..)
by proving some properties of the sédt. ={X e B(H); X®ye D.} introduced earlier.

Lemma V.4: (a) A.J=A- and JATJ= A% .

(b) V(1) A V(t)* =A. and (t) AL V(t)* =A% for all t eR.

Proof: () For Xe A, we know X®ye D~ . SinceJD.=D- it follows IJXJID,=IXD,
eJD.=D+, hencedJXJe A;, and thereforeJA.JC A, ; JJ=I implies A.CJA.JCA.,
and we get the first identity. The relatiohX* J=(JXJ)* implies now the second identity:
JALI=(JALI) =A% .

For (b) we observe that the self-adjoint operatdist i ) commute with the unitary operators
V(t), teR, thereforeV(t)D.=D. . SinceV(t)Py= D, it follows easilyV(t).A. V(t)* C.A. for
all te R. Using the group properties df(t) we deduced. CV(—-t)A.V(—t)* forallteR and
we conclude that the first identity holds. Taking adjoints the second identity follows. [

Proposition V.5: Introduce thé&-subspace,

Ke=K(W.)=L(Wz)NALNAL,
respectively,
Ke=K(W.)=L(Wz)
if the growth condition (37) is assumed and define
Mo(W.)=Kag(W.)={Ce K. ;CL.CK. ,L.CCL.}. (45)

ThenMy(W..) are a pair of admissiblé -algebras of bounded operators on the state sphce
Proof: By definition My(W..) are*-algebras of bounded operators Hnwhich are contained
in .. Hence conditiom, is satisfied.
Next, by part(b) of Proposition V.1 and paf@) of Lemma V.4 we knowJX..JC K+ . Now,
for any Ye My(W.) one has by definitionYX.CK. and K.YCK... It follows JY JIK.
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=JYJI.JICIYKLICIK:ICK. and similarly/ .Y IC K., henceIMy(W-)IC My(W5)
and thus, bydJ=1, IMy(W.)J=My(W-=); therefore conditiorA, is satisfied.

Finally, by part(c) of Proposition V.1 and partb) of Lemma V.4,V(t)K-V(t)* =K~ is
known for allt e R. Then we can proceed as for the second condition and conclude that condition
A is satisfied too. O

B. Causality for double-cones

Let G be the proper Poincamgroup. We define
G.={geG;g-W,=W.}

as the subset db consisting of those elements which leave the weédgeinvariant, respectively

map it onto the wedg®/_ . The following lemma determines the general form of an element in

G, explicitly and provides an elementary property®@f . We omit the straight forward proof.
Lemma V.6: (a) G is the subgroup of G consisting of elements g of the Poingesap G

of the form g=(a,A) with a=(0,0a%,a%) and

cosht sinht 0 0
sinht  cosht 0 0
A= 0 0 cosfd —siné (46
0 0 sind  cosé

with teR and e R.
(b) For ge G. anduv, as introduced in Sec. Il C, the following relation holds:

Qg =g (47)

Lemma V.7: For the set G={ge G;g-W, =W..} the following holds:

(@) U(g)A-U(g) 1=A. forallgeG, .

(b) U(g)A-U(g) 1=A. forallgeG_.

Proof: Lemma V.6 impliesU(g)V(t)U(g) *=V(t) for all ge G, and allteR. Using
functional calculus we deduce by analytic continuatio(@)V(=im)=V(xim)U(g) for all g
e G, , in particularU(g) D~ =D~ . Now, sincel(g)P,= P, for all ge G, statementa) follows
easily.

For geG_ we know g-W,=W_ and by Lemma V.6, for allteR, U(g)V(t)
=V(—t)U(g). Again using functional calculus and analytic continuation we dedu¢g)V
(xim)=V(Fim)U(g), in particular,U(g)D.=D- for all ge G_. Now statementb) follows
as in the previous case. O

Definition V.8: A pairM(W..) of admissible‘-algebras of bounded operators @tiis called
covariant if, and only if, it satisfies the following identity:

U(g) M(W,)U(g) = M(W.)VgeG.. (48)

The following lemma shows that there is at least one pair of covariant admi$s#itgebras.
Lemma V.9: The special pait1y(W-) H of admissible-algebras of bounded operators on
‘H which was introduced in Proposition V.5 is covariant, i.e.,

U(g)Mo(W,)U(g) *=Mo(W.) VgeGu. . (49

Proof: On the basis of Lemma V.6-V.7 we can proceed in more or less the same way as in
the proof of Proposition V.5 starting with the observation

U(g)ﬁ\;\/(w—)ﬂA+ﬂAiU(g)_1:£\;\/(W:)ﬂA:mA; VgeG.
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which follows from part(c) of Corollary IV.6 and par{a) of Lemma V.7. O
Next consider the set of all wedgelike regions,

W={WCR* W=g-W,, geG}=G-W, .

Clearly, two elementsg);, g, € G define the same wedge, i.€,-W,=g,-W,, if, and only if,
gl_lgzeG+. Thus the elements ofV are distinguished by the elemerig] of the quotient
G/IG, .

Now, given any pair of admissibfe-algebrasM (W..) which are covariant in the sense of the
identities(48), we assign to the wedg&/ € W the set of operatordA(W) defined by

M(W)=U(g) M(W;)U(g) * (50

with any representativegje G of the equivalence clasgy] which characterizedVv. M(W)
is well defined: WheneveWW=g,-W,=g,-W, there isgye G, such thatg,=g;-go and
therefore, by Lemma V.9,U(g,) M(W.)U(gz) ~*=U(g1)U(go) M(W)U(go) *U(gy) *
=U(g,) M(W,)U(g;) L. This lemma also shows that fa=W. the above definition of
M(W) is consistent, in particuldd (R) M (W, )U(R) "= M(W_) sinceR-W,=W_, whereR
is the Euclidean rotation by around thex®-axis.

Proposition V.10: The assignment of operatealgebrasM (W) to wedges W W is causal
in the sense that

M(W)CTM(W")' (51

for all wedges W W.

Proof: The causal complemew’ of a wedgeW=g-W, )V again belongs td/V since
W=g-(W,)'=g-W_=g-R-W, eW. Now consider any pair of operatobs; e M(W) and
X,e M(W'). There existsY;e M(W,) and Yse M(W,) such thatX;=U(g)Y,;U(g) !
and X, = U(gR)Y3U(gR)™* = U(g)U(R)Y3U(R) *U(g) * = U(g)Y,U(g) * with Y,
Y,=U(R)Y3U(R) e M(W_). By Theorem V.3 we know that the operatofg andY, com-
mute. Therefore the operatoXg and X, commute since

[X1,X2]=U(9)[Y1,Y2]U(g) *=0.

Thus we conclude. O
Finally recall that a double cone in Minkowski space is the intersection of all wedges that

contain it. Accordingly we assign*aalgebraM (D) of bounded operators o to a double cone

D and a*-algebram(D’) to the spacelike complemem®’ of D according to the following

formulas:

MD)= N MW), MDH)={ U MW)}". (52
DCWeWw D'DWeWw

Then by definition we have
M(D1) CM(W)CM(Dy) (53

for any triplet ©4,D,,W), with WeW and whereD,, D, are double cones such that
D,CWCD,.

Theorem V.11: Let a hyperfunction quantum field theory,U,D,®) be given. If
M(W,)d, is dense in the state spaée, then the nef{ M(D)} assigned to double cones D
satisfies the condition of causality (local commutativity) in the sense that for any pair of double
cones O, D, with D,CD} the operator algebraM(D,) is contained in the commutant of the
operator algebraM(D5,),

M(D;)CM(Dy)'. (54
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Proof: Though we are not in the setting of standard QFT the proofs of Theorem 13.3.7 of Ref.
1 and/or Theorem 5 of Ref. 17 apply since the necessary background has been provided.

VI. NONTRIVIALITY OF LOCAL ALGEBRAS

In this section we show that our suggestion for the assignment of fealjebrasM (O) to
open nonempty subse® of space—time is not vacuous by constructing a simple class of models
of hyperfunction quantum fieldevhich are not standard quantum fielder which it is easy to
show that the algebras1(O) of our construction are not trivial. The first subsection gives the
construction of this model while the second proves the nontriviality of these algebras.

A. Power series of free fields

A class of hyperfunction quantum fielggx) will be constructed as Wick power series of a
free field ¢(x). We begin with a brief discussion of power series of two-point functions.

The two-point Wightman function of a free neutral scalar field in four-dimensional space—
time is

D&n*)(x)=<27r>’3f L7 *a(k-k—m?) 6(k%)dk
R

:(277)73J'R3[2w(k)]*le*iw(k)xoeik.xdk, (55)

wherek-x=k%°—k-x, w(k)=VkZ+m?.

The identity(55) shows thaDﬁn_)(x) is the Fourier transform of a distribution whose support
is contained in the forward light cone. Therefdd& )(x) is the boundary value of the function
D{)(z) which is holomorphic in the backward tule ={x+iy e C*;yeV_}, whereV_={y
eR%y%<—|y|} is a backward light cone. Moreover, we have, for any0,

() (30— e x| < O DO e o)
D5y /(X |¢s,x)|\(277)3 5 20(K) dk=D;,'(—i€,0)=g(e), (56)

whereg(e) is a decreasing function &f>0 [g(e;)=g(e,) for €;<e,] ande®g(e)—(27) * as
e—0. By Lorentz invarianceDEn‘)(z) can be analytically continued to a function which is ana-
lytic in the extended tub&;={e C* -« R,} and invariant under complex Lorentz transfor-
mations.

SinceDﬁn_)(x) is a boundary value d])ﬁn_)(z) which is holomorphic in the backward tube, the
n-fold product D{,’(x)" of D{)(x) is also a boundary value of the holomorphic function
Dfn_)(z)n and defines a hyperfunction; moreover it is a distribution since the order of growth is
€ °" when the boundary is approached. But

2, DD} (0" (57

is a distribution if, and only if, all except finitely many of the coefficiebtss vanish(see Ref.
22). On the other hand, if

F(z)= ngo b,z" (58)

is not a polynomial but an entire function, thév) is a hyperfunction. Moreover it is a Fourier
hyperfunction becauslafn‘)(x—ie,x) for e fixed is a bounded function bi6). The power series
(58) determines an entire function if, and only if, its coefficiehtssatisfy the condition
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lim supb,|*"=0.

n—o

If the entire function(58) is not too rapidly increasing, i.eF(z) =expz, then (57) defines an
ultradistribution of Gevrey class but (68) is rapidly increasing, e.gF(z) = exp exp, then(57)
does not define even an ultradistribution of Gevrey class. It defines a generalized function whose
test-function space has no nontrivial functions with compact supports since it consists of quasi-
analytic functions. The above statement is proved by similar arguments to those in Refs. 23 and
24. We will prove it in a forthcoming paper.

The Wick monomials ¢': (x) of a free field¢ are defined by Wightman and’ @#ing in Ref.
25.

Now let{a}’} be sequences satisfying lim_[|a{’|?/n!]""=0 and defing()(x) by

* . n.
p(x)= 2 a(n”L,X)'. (59)
n=0 n:
Then Nagamachi and Mugibayashi have shown in Ref. 8 that the above series converges and
defines a hyperfunction quantum field defined in the Fock spaesxf using the basic relation
between Schwinger functions and Wightman functions for a hyperfunction quantum field which
was established in Ref. 13. We give here a new direct proof which does not rely on the relation
between Wightman and Schwinger functions.
To begin we recall:
Theorem VI.1 (Theorem A.1 of Ref. 26: As a formal power series we have

- AR)TR
(QpP(xp) - pP(x) )= > (60
rij=0;1s|<]sn .
where
n
rj=rj, r;i=0, Ri:jgl rij, =D& (x—x)),
n
RI= (rip!, TR= (tp", AR=]] a.
1<i<j=<n 1<i<j<n =1 J
From the above theorem one easily gets
Theorem VI.2 (Theorem 3.3 of Ref. §: If
lim[|a®|?/n1]¥"=0, (61)

n—oo

then the right-hand side of (60) is an entire function of the variables t

Now, if the coefficientsa{!) of p()(x) according ta59) satisfy the conditiori61), then, by the
above results, the right-hand side(68) defines aFouriep hyperfunction quantum fiel(bf type
).

We indicate briefly the proof of this observation. In factzjf-z; eT.=R*+iV, (V. de-
notes the forward light congthen Dﬁn_)(zi—z,-) is holomorphic there anﬂ)ﬁn_)(xi—xj) is the
boundary value ofD{ (z—z). Therefore, if Img,1—z)eV, (i=12,..,n—1), then
(Q,p0(zy)- - p™(z,)Q) is holomorphic and Q,p™M(x;) - p™M(x,) Q) is the boundary value of
(Q,pM(z1)p™(2,) Q). Since

|D§n*)(x0—ie,x)|g[2(2ﬂ-)3]*lf w(k)~le~ @Mk
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(60) defines a Fourier hyperfunction.

In order to show that59) defines a hyperfunction quantum figkke Refs. 10, 27, 28, 9, and
13), we show that the system of Fourier hyperfunctions of (60) satisfies the(modified
Wightman axioms, as formulated by Nagamachi and Mugibayashi in Ref. 9:

Ry Fourier hyperfunction property:

Whe Q(D4n)/a Wih(F)=Wi(),

Wheref_(x1 e Xn) =F(Xp -0 Xq).
R, Relativistic covariance: For every\(a) e G andn=1,2,... we have

Wih(AXi+a,...,AX,+a) =W, (Xq,...Xp)

as an identity for Fourier hyperfunctions &{". HereG denotes the proper Poincageoup.
R, Positivity:

k
E 0 Wm-%—n(fm@fn)zoy

m,n=

for any choice off ;e O(D*") and anyk.
R Local commutativity:

Wh(Xasoo X X115 Xn) = Wh(Xa, oo X4 15X -2 Xn)

if (xj—xj+1)2<0 as an identity for Fourier hyperfunctions &4{", for n=2,3,... .
R, Spectral condition: Fon=2,3,... there exists @, ;€ O(V}~ 1" such that

Wn(xl,...,Xn)=Wn_1(X2—X1,...,Xn—xn_l),

whereW,_ is the Fourier transform of,,_ .
Rs5 Cluster property: Ifa is spacelike,

Wh(X1soo XX 11T A8, X H Na) = Wi(Xq, oo XD Wi(Xj 1, Xn)
as\— o,
R, is obviously satisfiedRs follows from the fact thaD|,(z—\a)—0 Im ze V. , a?<0

and\—. In fact, lety;=z; for i<k andy;=z+\a for k<i. Thent;=D{ ) (y;—y,), 1<i
<k<j=n vanishes a3 —». Therefore,

R_ L
™= Tl (ty—0
1<i<j=n
unless allrj; for 1<i<k<j=<n are zero. Thus we have

TR

I1 (tij)r”l

1<i<j=k

I1 (tij)r”l

k<i<j=n

which shows the cluster property. .
In order to showR, and R,, a Wick polynomialp§\',)(x) is introduced as a truncation of

pO(x),
N

PV 0= a1 p(x)™/nt.

n=0
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Then the Wightman functions qu,\])(x) satisfy all the(unmodified Wightman axiomgsee Ref.

25). Since the right-hand side d60) is an absolutely convergent series of the varialt|gs
(Q,pP(x1) - pM(x) Q) converges toQ,pM(x) - pM(x,) Q) asN— o in the sense of Fou-

rier hyperfunctions. Thus we easily see Hermiticity and the positivity. However, such limit does
not necessarily preserve the supp@ege Theorem 4.1.14 of Ref. J1@&nd it is unknown whether

the spectral condition and the local commutativity can be verified in this manner. But as written in
Note 4.1 of Ref. 16, “if you want to use topology, use it at the level of holomorphic functions.”

In order to simplify notations we denote here and in the remainder of this section the analytic
function whose boundary value is the vacuum expectation valyp©)(x,)---pM(x,) Q) of the
fields p with (Q,p®(z,)--p™(z,)Q) and similarly for the fieldg{). Then the holomorphic
function  (Q,pM(z)--p™M(z,)Q) is the limit of the holomorphic functions
(Q,p\P(z1)- - pM(z,) ), and this will give us the necessary information. Our proof of the
spectral condition relies the following two results from the general theory of Fourier hyperfunc-
tions.

Theorem V1.3 (Theorem 3.3.1 of Ref. 2% LetI" be a closed and strictly convex cone with
vertex at the origin and satisfl/\{0}C{x,>0} and K be its closure iD". Let '°={¢&; (x,&)
=0,Vxel'}. Then everyue O(K)' has the following properties: The Fourier transform
(M,e“‘@) of u is holomorphic inR"xi(I'°)! and satisfies the following growth condition. For
every['’C CI'° (the closure of"’ has a compact neighborhood in the closurd 8fwith respect
to the topology oD") and e>0,

(€9 <C explelRel|+ xr,(IM{)), {eR"XIT", (%)
where

xr.dm= sup  (—(x,7)+e€x|).
xel—¢(1,0,...,0

Theorem V1.4 (Theorem 3.3.2 of Ref. 2% Let F(¢) be holomorphic inR"Xi(I'°)" and
satisfie(s t)he growth conditiof*). Then there exists a uniquge O(K)' such that K{)
=(u.e9).

Since D{,’(z) is a bounded holomorphic function IR*XiT’’ for any I''CCV_,
(Q,pM(zy)---pM(2,) Q) satisfies the estimate*) for {;=z;,,—2z and =V} ' Thus we
deduce the spectral conditid®y. For the proof of the local commutativity, we use the following
theorem on p. 83 of Ref. 19.

Theorem VL.5: If W,(z,,...,2,) has all the properties of a Wightman function except the
ones derived from locality and if in addition/,(zy,...,z,) is symmetric in z,...,z,, then it
satisfies also the requirements of locality

This theorem is proved for hyperfunction quantum field theory in the same way as in standard
tempered quantum field theory. Sinc@,(of\‘l)(zl)---pf\,”)(zn)Q) is symmetric inzq,...,z, in the
extended tube, the functio)p*)(z;)---p(™(z,) Q) is also symmetric there. Thus we deduce the
locality conditionR;.

By the reconstruction theorefsee Ref. § we have a Hilbert spack, field operators'(f)
for f e O(D%), and a unitary representation of the PoincgreupU(a,A) on H.

The Hilbert spacét can be assumed to be contained in the Fock spgcef the free field.

In fact, the vectorsDN=p,(\‘1)(fl)-~~p(N“)(fn)Q for f; e O(D* are contained irt{z and

|PN—Dyl2=(Py, Py) — (P, Py) — (P, D)+ (Pyy, Py)—0

asN,M—oc. Thusp®(f) - pM(f ) Q=limy_.. p{O(f1) - p(f)Q belongs toH .
Let {a,}ncn be a sequence satisfying

lim[|a,|?/n!]*=0

n—oe
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and definep(x) by

=3 2, P

n!

Let p(V(x) of (59) be either(x) or p(x). Then we have the system
(H,Q,¢(x),p(x),U(a,A)),

which satisfies the defining conditioh,...,Hs of a hyperfunction quantum fielee Ref. 10
Since the vectorgb(f,)---¢(f,)Q span the Fock spacd we haveH="Hg .

Thus we arrive at the main result of this section.

Theorem V1.6: Let ¢ be a free massive neutral scalar field afal,},. a sequence of real
numbers satisfyingm,, _,..[ |a,|?/n! 1¥"=0. Then the (Wick) power serigsof ¢ formed with the
coefficients g according to Eq. (59) is a hyperfunction quantum field (but not a standard quantum
field if infinitely many of the coefficients, @re nonzera.

B. A Model with nontrivial local algebras

The power seriep of a free scalar fieldp provide a class of hyperfunctions quantum fields
(under technical restrictions discussed in the previous section

The main focus of our discussion now is to show, for the class of medadastructed above,
that£,,(0)=L’(O) contains indeed a nontrividlalgebra of observables. Clearly in the proof of
this statement we will use the explicit definition of the hyperfunction quantum fields an
essential way.

For a free neutral scalar fielf(x) of massm the field operatorg(f ), for realf e S(R?), are
known to be essentially self-adjoint on

Do=linspaf{Q,d(f1) - d(f)Q; freS(RY,n=1,2,..}.

Denote the self-adjoint closure @f(f) by ®(f). Then,

S Uy,

converges fory e Dy, and defines a unitary operatef®(") (see Theorem X.41 of Ref. 30

To an open seD in R* assign the*-algebraM(0O) generated by elemen&®(") for f
e S(R*) with suppf CO. This defines a net of nontrividlalgebras of bounded operators &
Using the relation

ol @(f )ei(b(g):eDfn_)(f,g)/Zeitb(Hg)' 62)

we havee'®(fD...e'®(f=cd®(fat+1) for somece C. Thus, locality of the ne{M(O)} is
evident from(62) sinceDEn_)(f,g) = Dﬁn_)(g,f ) if the supports of andg are spacelike separated.
DefineW¥(g) by

p(g)™

W(g)=expig(g):= 2, i"—

Let S be a subset of1,2,..,n} and =W (g) if i € S otherwisey=p(x;). Then we have

(Q, Dy M) = > ART"

, 63
rij=01si<jsn R! ( )

N
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where
t;=DLx—x) if i,je&S,
tij=J DG (xi—x)gi(x)gj(x)dxdx; e C i i,jeS,
tij=DEn’)(xi,gj)=J D (xi—x))g;(x))dx; if i¢S andjeS,
t”-:Dfn’)(gi,xj)zf D (xi—x))gi(x)dx if ieS and jeS.
Fix j e{1,...n} and consider pointg; e C* which satisfy the following conditions: Ira(,,

—z)eV,,i=1,...j—landi=j+2,...n—1; Imz,,eV,, Imz=0.
Now we apply the identity63) to

(Q,p(z1) - p(Zj-1)p(X)V(Q)p(Zj12)  p(Z,) Q)
and look at the effect of the exchangejoandj +1, e.g., oft; ;—t; ;,,. We find
(Q,p(z1)p(Z- )W () p(X)) p(Zj+2) *p(Z,) D).

If x; and supp are spacelike separated, then. ;=D{ (x;,9) =D ’(g9,x;) =t;+1;. Thus we
get

(Q,p(z1) - p(Zj- 1) p(X)V(Q)p(Zj12) - p(Z,) Q)
=(Q,p(z1) p(Zj-2)W(Q) p(X)) p(Zj12) - p(Z,) Q)
and therefore
(Q,p(X1) = p(Xj— 1) p(X)) W (@) p(Xj 1+ 1) " p(Xn) 1)
=(Q,p(Xy) p(Xj— )V (@) p(X)) p(Xj+1) " p(Xn) L) (64)

as an identity between Fourier hyperfunctions.
Now assume tha® is an open bounded nonempty subset of space—time ang ¢ha(R*)
has its support ifD. Then, for allx; in the causal compleme@’ of O we deduce fron{64)

(W(g)*u,p(xj)v)=(p(x))u,¥(g)v) (65
for all u=p(f;_1)---p(f)Q and allo=p(f; ) --p(f)Q in Dy, where
Do=linspadQ,p(fy)---p(f)Q; f;e O(DY), n=1,2,..}.

For the hyperfunction quantum fiejd recall the definition of the set of bounded operators
localized in an open s@CR* according to Sec. 1V,

L' (O")={Xe B(H);supp (X*u,p(x)v)—(p(X)*u,Xv)]CD"\O’,Vu,v € Dy},
whereDy=linspad Q,p(f1) - p(fn)Q; f]-e(j)(D“), n=1,2,..}. Hence Eq(65) shows
¥(g)eL’(O)

if suppgCO. Since

‘expi p(g) =6 O @92 expid(g),
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we have expd(g)elL’(0’), and therefore
M(O)CL'(O').

This shows

Theorem VI.7: Consider a free neutral scalar fiel@d and assign to open bounded nonempty
sets QZR* the *-algebras M (0O) introduced above. For the power seripof ¢ according to
Theorem V1.6 form the spaces(I0’) of bounded operators on the state spaceafhich are
localized in open bounded nonempty sets R according to Sec. lIl. Then

M(O)CL'(O")=L;(0").

VIl. CONCLUSION

In this paper the old problem of how to assign, in a relativistic quantum field theory, local
*-algebras of observables to open bounded nonempty subseR* has been addressed in the
context of hyperfunction quantum field theory. Since the localization properties of hyperfunction
quantum fields are considerably more subtle than stan@dightmarn quantum fields the estab-
lished routes to this problem do not apply. Thus a major step in addressing this problem “cor-
rectly” is our suggestion of the set§ (O) of the set of those bounded operators on the state
space of the fieldb which commute weakly with all products of fieldB(x,)---®(x,) for all
Xce O, n=1,2,.... The local-algebras of observablest(O) are then defined as suitable sub-
spaces ofZ(O').

In order to enable this construction, the proof of three important structural results in hyper-
function quantum field theory which are all well known in standard QFT: existence of a CPT-
operator, Reeh—Schlieder theorem, Bisognano—Wichmann analyticity had to be given. This then
prepares the ground for the proof of some structural results for the weak comm{gi@3 and
a suggestion forM(O)C L, (O’). Following basically a modification of the Bisognano-
Wichmann strategy the locality of the ngt1(O)} is established for double cones. We conclude
that the Bisognano—Wichmann theory does not really rely on the existence of compactly sup-
ported test functions.

Since hyperfunctions can grow much faster than tempered distributions, a domain problem in
the definition of£ | (O) (which does not occur in standard QFTas to be addressed, and a mild
growth restriction for the hyperfunction quantum field is offered which allows us to solve the
domain problem. Then, relying on recent results in the theory of Fourier hyperfundtioms
kernel theorem in full generalifya simplifying and more intuitive characterization of the weak
commutantsZ ;,(O) is derived in

L,(0)=L"(0),

whereL’(O) is the space of all bounded operators on the state space of the field which commute
weakly with the field®(x) for xe O.

It seems to us that it is expected too much to be able to prove the nontriviality of the suggested
*-algebras in full generality without any further specification of the hyperfunction quantum field
under consideratiofas in the case of standard quantum figld$us we address the problem of
the existence of nontrividi-algebrasM(O) in the context of a class of concrete models: Wick
powers series of free fieldén general they are hyperfunction quantum fields but not standard
quantum fields For this class of models the existence of a nontrivialgebraM(O)CL'(0')
is shown explicitly. It is remarkable that these models of hyperfunction quantum fields do not
admit test-functions with compact support.
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We show that a partition function of topological twistBld=4 Yang—Mills theory

is given by Seiberg—Witten invariants on a Riemannian four manifolds under the
condition that the sum of the Euler number and the signature of the four manifolds
vanishes. The partition function is the sum of the Euler number of instanton moduli
space when it is possible to apply the vanishing theorem. Also we obtain a relation
of the Euler number labeled by the instanton numbevith Seiberg—Witten in-
variants. All calculations in this article are done without assuming duality.
© 2001 American Institute of Physic§DOI: 10.1063/1.133131]9

[. INTRODUCTION

The aim of this article is to obtain a relation of the partition function of topological twisted
N=4 gauge theory with Seiberg—Witten invariants in four manifolds. The partition function is
given by the Euler number of instanton moduli space in some conditions. We will show that the
Euler number labeled by instanton numikgs expressed by Seiberg—Witten invariants when the
sum of the Euler number and the signature of the base four manifolds vanishes. This result gives
us the formulas to obtain the partition function of the twistée 4 gauge theory by Seiberg—
Witten invariants.

The partition functions of th&l=4 Yang-—Mills theories on some four manifolds are calcu-
lated by Vafa and Witten with topological field thedrylt is an SL(2Z) modular form. SL(Z)
transformation is understood as an extension of Montonen—Olive dd&itythe duality relation
is apparent in that partition function.

This duality is deeply connected with the Hilbert scheme picture of instanton moduli $pace.
However, in general, instanton moduli space has variety compactification and the sum of the Euler
number of any compactified moduli space is not necessarily a modular form. Actually, in our
calculus, the partition function is not a modular form with no contrivance. On the other Nand,
=4 gauge theory is given by the toroidal compactification of 10-8im1 gauge theory on a
4-dim manifold.(Note that “compactification” is used two waysSo the theory is interpreted as
a low-energy theory of the heterotic or type | string theory. Recent developments in string theory
show us much evidence of duality relation in field theory. In our case, Vafa shows us one method
to link the compactified instanton moduli space with the Hilbert schefffes fact implies that a
choice of compactification is understood in string theory better than field theory. We discuss the
problem of compactification and duality later.

For our purpose we use a tool similar to topological QCD constructed by S. Hyun, J. Park, and
J-S. Park(H-P-P.% They used the non-Abelian monopole theory and related the Donaldson in-
variants to Seiberg—Witten invariants without using dudifftywe also calculate the partition
function in the low-energy limit of cohomological field thedrand there is no request of
S-duality. This is the most different point from Dijkgraaf, Park, and Schrifefhiey have deter-

3Electronic mail: sako@math.sci.hiroshima-u.ac.jp
bElectronic mail: sasaki@particle.sci.hokudai.ac.jp

0022-2488/2001/42(1)/130/28/$18.00 130 © 2001 American Institute of Physics



J. Math. Phys., Vol. 42, No. 1, January 2001 Euler number of moduli space and S—W invariants 131

mined the partition function oN=4 supersymmetric Yang—Mills theory on a’ldar surface,
using S-duality. Their result is given by Seiberg—Witten invariants, too. So, it is interesting to
compare our results with theirs.

What we do first is to extend the instanton moduli space to non-Abelian monopole moduli. In
usual cohomological field theory, it was done by H-B-Bnd Labastida and Main'? Vafa—
Witten theory is constructed as a balanced topological field theweeydenote it as BTFT in the
following).!®* BTFT has no ghost number anomaly, and its partition function is a sum of the Euler
numbers of given zero-section space under the vanishing theorem. In Sec. II, we will construct the
non-Abelian monopole theory as BTFT and investigate some characteristics of the theory. The
vanishing theorem is an obstruction to constructing the partition function as the sum of the Euler
numbers of the monopole moduli, and to get a relation with Vafa—Witten theory. We do not study
this case closer in this article.

In Sec. lll, we obtain the formulas between the partition function of a twibted? Yang—
Mills theory and Seiberg—Witten invariants. To obtain them, we break the balance of topological
charge. The tools in this article were used in obtaining a relation of Donaldson invariants and
Seiberg—Witten invarianfsWe use a model which has a gauge multiplet that is balanced and a
hypermultiplet that is not balanced. We call the model unbalanced topological QCD. The vacuum
expectation valuéVEV) of an observable is calculated and the relation between the Euler number
of instanton moduli space and Seiberg-Witten invariants is obtained if the vanishing theorem is
applicable and the sum of the Euler number and the signature of the four manifolds vanishes. The
comparison with the papers of Vafa and Wittemd Dijkgraaf, Park, and Schroé?ss also made
in this section. In the last section, we discuss some remaining problems and the possibility of
extension.

II. BALANCED TOPOLOGICAL QCD

In this section, we construct a balanced topological Q@DQCD), which is a twistedN
=4 Yang—Mills theory coupled with massive hypermultiplets in the fundamental
representatior®:11:6

A. Balanced topological QCD

Let X be a compact Riemannian four manifold éathe an SW2)-bundle overX. The bundle
E is classified by the instanton number

1
k=§zLTrFDF, (2.0

where Tr is the trace in the fundamental representation dRSahd F eQi(QE) is the adjoint
valued curvature two-form oK. We denote the group of gauge transformatiorgbye., elements

of G are sections oP, whereP is the associated principal $2J-bundle overX. We pick a spifi
structurec on X and consider the associated SpimndleW; . Let A be the space of all connec-
tions onP andI' (W, ® E)(I'(W, ® E)) be the space of the sections of the §fiandle twisted by

the vector bundI&. After twisting, the complex boson in the hypermultiplet becomes a section of
(W, ®E)(I'(W, ®E)):

qeT(W; ®E), q'el(W;®E),
L (2.2
Bel'(W,®E), B'el'(W_®E),

whereE denotes the vector bundle conjugateEtoThe spiti Dirac operator

oD, T(W{ ®E)—T'(W, ®E) (2.3



132 J. Math. Phys., Vol. 42, No. 1, January 2001 A. Sako and T. Sasaki

is the Dirac operator for the spibundle twisted byE. We will sometimes denote”D , by D or
DE.

Throughout this article, we restrict our attention to the case that the gauge grouf?jsadd
the theory is coupled with hypermultiplets in the fundamental representation.

1. Algebra of BTQCD

In this section, the algebra of BTQCD is given.

We introduce two global supercharg®s carrying an additive quantum numbghost num-
ben U==1. When they act on fields in the adjoint representation, they satisfy the following
commutation relations:

Qi=69, {Q,.Q}=-42, Q°=-¢%, (2.4

<

where 9 denotes the gauge transformation generated by adjoint scalarﬁﬁdtﬁ(gE) and we
adopt6gA,=D .0, 5B, ,,=i[B.,,,0], andsjc=i[c,d]. When they act on fields in the fun-
damental representation, they satisfy the following commutation relations:

Qi=-43, {Q..Q}=8, Q°=¢, (2.5

where we also introduce (1) global transformation generated yeiR and we adoptsyq
=(i9+m)q, 8%q"=q"(—io—m), 8IB=(i6+m)B, andsIBT=BT(—if#—m). The relative sign
difference betweel2.4) and(2.5) is simply the difference of representations. A simple explana-
tion is the following. One can construct a field in the adjoint representation with a pair of fields
0.9 in the fundamental representation,

J2=q'T?q. (2.6)
Using the above transformations, one can check) follows from (2.5):
Q332=Q%(q'T%q)=(— &a") T2q+q' T3~ 63a) =i[q'Tq, 6]*= 5332 2.7)

Note that the relative sign difference betwd2ml) and(2.5) is consistent with this derivation. The
recipe for giving mass to fields in the fundamental representation by global symmetry is consid-
ered by H-P-P.

We defines.. transformationss.=[Q. ,*}. 5. transformations are given in Appendix A.
See also Refs. 13 and 6.

2. Action of BTQCD

Using the previous fields and transformations, we define the action of BTQCD as

h2S= f Joz, (2.9

where
L=6.6_F. (2.9
Here F is described with fields in the previous paragraph and has ghost number 0. The general

recipe for constructing a balanced topological field theory is given by Mebes!3
Here F is explicitly given by
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F:(Blivasi#y) (Xlluvalszp,y) (X”alp#a)—’_( i 3BMVa[B+,LLp’B+V0'] gpo)

+(BT5,) = (x4 “Wa) — (XBAWE) +(STB ) + (U X+ (WhxBY) + (£279),

(2.10
where
st'=F*"+qlo*"q, (2.12)
=(Dq),- (2.12
Finally, the full Lagrangian is given by
Li=5_6_F (2.13

Explicit expression of this Lagrangian is given in Appendix A. This Lagran§iAn8)] is differ-
ent from Vafa—Witteh in matter fields(q, B, etc) and also different from H-P%in dual fields
(B#”,c,B, etc). However, due to its construction, it is balanced.

B. Fixed point

In this subsection, we study the nature of the action given in Sec. Il A. Here in particular we
investigate the fixed points and vanishing theofem.

1. Fixed point
To check the nature of the Lagrangian, we decompose the bosonic part of LagréhBan

'CI)uc!lson ﬁboson Lboson! (2-14)
where
‘cboson__Hl’uya{HJr,u,V_(Si,u,V_i[B+,u,pvB+V0']ang_i[B+p,V1C]a)}
—Hg"{Hpo—(-2D#B% , +iB'o, T2%q—iq'o,T°B—D,c?)}
—H {Hg,— (s, +icB,+mB,)}+(h.c)
—HpHEY— (= (DB)*+ (a#"B, ,,q)“+icq®+mg®)} + (h.c) (2.15
and

LhRor=—{[6,61°00,01*~[c, 61 ¢, 01°+[B~”, 01 By ., , 0]} + D, 6°D* 6"
+(—iqTo—q"m)(i 6g+ma)+(—iq"o—q'm)(i6q+mq)
+(—iBTo—B'm)(i6B+mB)+(—iBTo—Bm)(i 6B+ mB). (2.16

Here Lyl is defining the moduli space that we want to consider A, is induced for the
projection to gauge normal direction. Lagrangi@ilb) is rewritten as

ﬁboson H Squal’e term (S+/.LV I[B+/.Lp’B+V0'] ng')2 ([B+/.LV1C]a)2

+7(-2D#BY,,+iBTo,T2q—iq"o,T2B)%+ 7 (D,c)?+3|s|?
+4]icB+m.B|?+ 3 —(D'B)*+ ("B, ,,9)%?+ |icq+mcq|?. (2.17

Thus we have the following fixed point equations:
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Fiwta'o,a-1[B.,,.B,.]9""=0,
-2D,BY"+iB'e"q—iq"e"B=0,
s=Dbqg=0,
-D'B+7,,B4q=0,

D,=D,c=D,0=0,

. - o (2.18
[6,0]1=[c,0]=[c,0]=[BL",0]1=[BL",0]=[BL",c]=0,

(i0+m)g=(i6+m)g=(ic+m,)q=0,
a'(—io—m=qg'(-ie—m)=q'(~ic—mc)=0,
(i6+m)B=(i6+m)B=(ic+m.)B=0,
Bf(—ig—m)=BT(—io—m)=BT(—ic—m,)=0.

If hypermultiplet fields are set to zergq€q'=B=B"=0), then the above equations are Vafa—
Witten equation$:!° Thus we call the above equations extended Vafa—Witten equations.

2. Problem

In the previous paragraph, we have obtained fixed point equations of BTQCD. The equations
for fermionic zero-modes are just the linearization of the fixed point equation and the condition
that they are orthogonal to gauge orbits. Due to the balanced structure each fermionic zero-mode
has a partner with the opposité number. Thus there is no ghost number anomaly and the
partition function is well defined, i.e., there is no need to insert observables. We want to compute
the partition function of BTQCD. According to Vafa—Witten, if an appropriate vanishing theorem
holds, the partition function becomes the sum of the Euler numbers of moduli space which we
want to calculate. Roughly speaking, the vanishing theorem is understood as the condition that
dual fieIds(Bw,,,c,B,BT, etc) are to be zero and the dimensions of their moduli space become
zero, when we choose an appropriate métiitowever, we could not verify that the vanishing
theorem holds in this model. To compare the result of this section to that of the next section, we
give the only result to compute the partition function of BTQCD on the condition that the van-
ishing theorem holds.

C. Result

In this subsection, we give the result of computing the path integral of BTQCD. We define
partition function of BTQCD as

1
= Tyt -s
2= Vol G2m)" f DWDywDQ PyigDQDYqe = (2.19
where
W=A#,B¢”,H’§,H’i”,0,c,§,
Pw= B oxe” X Em,

Q=0,B,Hq Hg, (2.20
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lr//Q: ¢Iq!(/lB;XIq;Xg ’
Q=dim of H’s.

Here we denote auxiliary fields &8 ,H"" ,H'q ,HE , and we call auxiliary fields fo¥ asH’s of
Y in the following, dim ofH’s is the number of the auxiliary fields.

After path integrations of the transverse part we get the partition function as the sum of two
branches, according to the methods of the next section,

Z2=27V"W47zB-UDS—W (2.21)
ZV~W is a contribution from branch Igauge symmetry is unbrokgnand corresponds to a
Vafa—Witten partition functionz®~Y(S~W is a contribution from branch Ryauge symmetry is
broken to W1)], and corresponds to balancedlWmonopole theory. The fixed point equations of
the balanced (1) monopole theory are
Fip,v—’_ %qIE/LVqlz O,
—2V,B4"+i $Blo"q;—i 3q]0”B,=0,

(2.22
D3q1= 01

- ID“.Q‘Bl—i_ %E,uvBﬁysql: 0,

whereFiW is a curvature of (1) left symmetry after breaking S8) and the labels of; andB;
are the ones of color. Since we do not know the vanishing theorem for dual f&i%,@l,BI)
from (2.22), we stop to investigate this model further in this article.

IlI. UNBALANCED TOPOLOGICAL QCD

In this section, we compute a correlation function of an appropriate BRS exact opéhator
BRS operator is defined in Appendix) An the unbalanced topological QCD. As a result, we can
describe the Euler number of instanton moduli space with Seiberg—Witten invariants. We have a
similar but not the same expression to Dijkgraal,'° because we treat a different theory from
theirs. We discuss this point at the end of this section.

A. Unbalanced topological QCD

Here we construct the unbalanced topological QCD, which is a twisted Yang—Mills
theory coupled with only one massive hypermultiplet in the fundamental representaote-
note it as UBTQCD in the following Alternatively, one obtains a UBTQCD, when one sets one
massive hypermultipletR, /g ,Xg ,H'E!) of BTQCD in the previous section to zetwe call this
process breaking balanced strucjure

1. Algebra of UBTQCD

The algebra of UBTQCD is given as a part of the BTQCD algebra. Contrary to the previous
section, we only consider the global supercha@e. When it acts on adjoin{fundamental
fields, it satisfies the following commutation relation:

Q% =5%—59). (3.1)

We adopt the samé, transformations as in the previous section and in AppendiRA—(Al14).
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2. Action of UBTQCD
We define the action of UBTQCD as

h?s= f d*x gL, (3.2

where
L=6,T. (3.3
We explicitly give¥ as
W= xHE,,~ (s, (B, .Bi 120" —i[B, ., .C]1Y)}
mv +uv +upr=+vo +uvo
—x""{Hgs — (—2D#B%,,— D, e}~ xg “(Hyo— Sal —{HG * "} xq4

+{i[ 6,017~ &9 c, 017 +i[BX” 01793, + D, 6%yH?

—(—iqlo—mal) vl — ¥}, (i 69+ mq®), (3.4

where
Shra=Furay q*r;,w-l-aq, (3.5
s*=(Dq)“. (3.6

Finally, the full Lagrangian is given by

LU=5. v (3.7

=—HHR,,—(s%,,~i[B+ .y Bi o]0 ~i[B, ,.cl%)}
= X=Xy 0174 2D 5+ 0, T+ 70, T2 = 20[By 1y B0 1707
—i[ ¥y CI*—i[B 4, 1% — Hp"{Hgs — (—2D*BY ,,— D )}
— x4 ~ilxg,,01°~ 2D"y3,,,— 2i[ y*B, ,,]1°~ D& ~i[ y,,c]%
—HY Hy = Sot = x4 {D g+ o,i yPq}+ (h.c. previous two terms
—{[0,61%6,61°~[c,6]%c,0]°+[B4",6]B. ,,, 0% + D ,6°D*0%i[ 6, 7]*n"
L€, 01+ EC, n P iy 017y, +i[BY”, 7]*YR,,+ Dty ®
+i[ 4, 01292+ (—iqTo—q"m)(i 6g+ma) + (—iq"6—q'm)(i 6g+mq)
+ 2981 0+ M) thg—2x4 (1 0+ M) xy— (=19 90" ) g+ 05 (i 9O+ 7000). (3.8

Notice that Lagrangian(3.8) is given by Lagrangian(A18) of the previous section if
(B, ,Hg ,xB) is set to zero.

B. Fixed point

In this subsection, we study the nature of the action given in Sec. lll A. Here in particular we
investigate the fixed points and some observables to insert.
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1. Fixed point

To check the nature of the Lagrangian, we decompose the bosonic part of Lagréhgian

/:'I)ucilsonz ﬁggson_l_ [’Egoson! (39)
where
ggson: - HIJrMVa{HIf,u,V_ (Si,u.y_ I [B+,u,p ,B+V(r]agp0'_ I [BJr/u/ 1C]a)}
—HBP{HE2 - (-2D#BY ,,— D)} —Hy “{H}, — s} + (h.c) (3.10
and

Lo — {16,017 6,01°~[c,0]°+[B~" 6] B. ,,,0]%} + D, 6°D* 6%+ (—iq o —q'm)
+(iog+ma)+(—iq'e—q'm)(i6q+mq). (3.11)

Here Lyl is defining the moduli space that we want to consider A, is induced for the
projection to gauge normal direction. Lagrangi@il0 is transformed into

ggson: _{Hl-flp,v_%(Si,u,y_i[B+Mp’B+Vo':|agp0—_i[B+,u,V vc]a)}z
—{Hpa—3(-2D*B%,,—D,c)}2—2|Hy,— 35,/?

+%(Si,uv_i[B+,u,p rB+V0']agpo—_i[B+,uV10]a)2+ %(_ZDMBiﬂp_ Dpca)2+%|sa|2'

(3.12
Thus we have the following fixed point equations:
Fiut0'0,,0-1[B 4p,B110]g? —i[By,,,C]=0,
—2D,B*"—~D"c=0,
s=Dqg=0,
D,0=D,0=0, (3.13

[6,6]=[c,0]=[c,0]=[B*",0]=[B4",6]=0,
(i6+m)q=(i6+m)g=0,
qf(—=i6—m)y=q'(-i6—m)=0.

2. Problem

In the previous paragraph, we have obtained the fixed point equations of UBTQCD. In the
same way as in the previous section, the equations for fermionic zero-modes are just the linear-
ization of the fixed point equations and the conditions that they are orthogonal to gauge orbits.
Compared with the previous section, UBTQCD does not have balanced structure. In particular, the
hypermultiplet does not have balanced structure, while adjoint representation fields still have
balanced structure. The partition function of unbalanced theory becomes zero due to its ghost
number anomaly when the moduli space dimension of the matter field is nonzero. Thus to get a
well-defined path integral, we have to insert some observables. One can think of an observable
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|=J d*x (q"(i 0+ m)q+ ylipy). (3.14

Note that this observable itself is BRS exact, i.e.,

1
I=5+Ef d4x(—z/;gq+q’f¢//q). (3.15

Thus the expectation value bis zero according to the Ward—Takahashi identity, and the expec-
tation value ofe' becomes zero when this theory has a ghost number anomaly. However, as we
will see, we obtain nontrivial results.

C. Branch

In this subsection, we will show that the fixed point equations are decomposed to two
branches. We cite H-P-P.
Equations

D,0=D,0=0, [6,0]=0 (3.16

imply that 6, 6 can be diagonalized in the fixed points. If connectidgsare irreducible,, 0

should be zerdthe gauge symmetry is unbrokenf connectionsA , are reducible, 6 can be
nonzero[the gauge symmetry is broken down t§1lJ. When these solutions are applied to

(i6+m)q=(i 6+m)q=0,
_ (3.17)
q'(—ig—m)=q'(~i6)—m)=0,

we have two branches:

branch 16=6=0 andg=q'=0
or

branch 26= 63T3+0, 6= 6°T3#0 andq+0, qf+0.
Note that in branch 2 we choose unbrokefl)uas T® direction without a loss of generality.

Branch 1:60=6=0 andq=q"=0, i.e., the gauge symmetry is unbroken. The remaining fixed
point equations are

F4'—i[B.,, B,,]90?"=0, —2D,B“'=0, D,c=0,

3.1
[B* c]=0. (.18

Here one may apply the same condition as Vafa—Wjtterinduce the vanishing theorem, and
obtain the moduli space of

FAr=0. (3.19

Branch 2: 0= 63T3%0, 6= 6°T3+0 andq#0, q*#0, i.e., the gauge symmetry is broken to
U(1). Thus the bundI€ splits into line bundlesE=L &L~ ! with L-L=—k. Then Eqs(3.17 are

i
— 3 0
20 +m a0
(i6°T3+m)g= . ( )=0,
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=60*+m 0
33 _ 2 Qi)
(i6°T3+m)g= . =0,
o —loim)
2
(3.20
i
—56°-m 0
q'(=i6°T*~m)=(a] a3 i =0,
0 503+m
i—
—Eﬁ m 0
q'(=i6°T3~m)=(a] ab) i =0.
0 —+m
5 07+ m
Thus the only nontrivial solutions fay are either
_|% t—(qt i 3 _i_s =_
q=| o/ a'=(a 0), and 5 07+ m=56>+m=0 (3.21)
or
q=(0) q'=(0 q}), and —i—03+m=—i—_3+m=0 (3.22
a2/’ 2 2 2 ' '

Throughout this article we pick the nontrivial solutions fgras q;#0 and 6°=2im. In this
branch the equations

[c,0]=[c,6]=[B"",6]=[B"",6]=0 (3.23

imply that nonzero solutions d@“”, ¢ have the same directiof® as 6. Finally, we obtain the
remaining equations

F:-;i—p,v—‘r %qIE,qulz 0!
—2veBY ,,=3*c3=0, (3.24
U"U'Dluq]_: 0,

where V# is the covariant derivative with respect to the Levi-Civita connection of background
metric g#”. Here we reinterpret (1)@U(1) [gauge W1l) and spifU(1)] as a new 1)
[spirF/U(l)], or alternately we redefinW§®§=W:, as a different spinstructurec’ =c+2¢,

i.e., detW ®)=L.®% As a result,(3.24 can be interpreted as a perturbed Seiberg—Witten
monopole equation for the sgistructurec’ as well as H-P-PandB. , ¢ equations for thers
direction.

D. Gaussian integral

In this subsection we compute the path integral of UBTQCD. According to Appendix B, we
could evaluate the exact path integral of this theory. In this subsection, we only denote the
diagonal part of the big matrigsee Appendix Bto read the right contribution easily. As we have
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already mentioned in Sec. Il B, we have to insert some observables of fundamental fields to get
a well-defined path integral. Thus we define the expectation valet a$

<el>m,0,k:m f DWDYDQ DYLDQDYge S, (3.25
where
W=A, B4 HE HA 6,c,0,
Yw= " xe" X €,

Q=q,H},
| (3.26
Yo=tq.Xq>

I=f d*x(q"(i 0+ m) g+ i),

Q=dim of H’s.

In a general computation of the path integral of topological field th€®Ff), it is sufficient
to keep only quadratic terms for the transverse degrees and compute the one-loop approximations
which give a result exactly.Now let us see what are transverse degrees of freedom in each
branch. Picking a Riemannian metgcwe rescaley—tg and take thé—ce limit. In branch 1, the
gauge symmetry is unbroken and the matter fields decouple as the transverse degrees of freedom.
In branch 2, the gauge symmetry is broken down ¢&)dnd the hypermultiplet reduces to one of
its color. The suppressed color degrees of freedom for the hypermultiplet and the components of
the N=4 vector multiplet which do not belong to the Cartan subalgebra part become the trans-
verse degrees of freedom.

On the other hand, the path integrals for the nontransverse degrees should be computed
exactly. These path integrals correspond to the path integral of Vafa—Witten theory in branch 1
and the path integral of (1) monopole theory and @)B, , ¢ theory in branch 2.

We will use the notatiojO), . « for the VEV evaluated in the massive UBTQCD for a given
spirf and instanton numbek

1. Result of branch 1

In this branch, the degrees of freedom for the hypermultiplet become the transverse degrees of
freedom. One can decompose the Lagrangg8) into two parts:

L~V W(1)+£Y(1), (3.27)
where the Vafa—Witten part is

LYW= —HPAHE  —(F2,,~i[By ., B\, 1207 —i[B.,, .CI9)}
X =ilxY . 012+ 2D 47— 2B, 8,0 1?07~ ([ Y,y €1
—i[By ., £1% —HB Y {Hp2 — (- 2D#B% ,,— D c?)}

—xs"{—ilxs,.01°—2D*y3 , ,— 2i[¢* B, ,,1°~D,&~i[y,,c]?}

—{[6,6]%6,6]°~[c,6]%[c,0]*+[B%",0)*[B. .., 6]}

+D,0°D 0P +i[ 0,72 P +i € £, 012+ €% ¢, ]?
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YR 01 R, I[BY 018, + Dy iy, 617y (3.28
and a quadratic Lagrangian due to the transverse degrees is
LY(1)==Hy {H{,— St — xy D+ (h.C. previous two terms- 2g mma+ 2y My, — 2y mxy,

1 1
= —2|Hy+--[2=2m| g+ -2 - Eoﬂ(lb*lb+4mm)q+ ﬁwg(mfmwmm%. (3.29

One can rewrite the path integrdd.25 in this branch as

L) p—— fD Diyre S "D, ,,fD "DYY DO Diprge 5D+,
<€ >m,c,k( ) V lg(2 )Q lﬂ e (2 )Q Q wQ Q lﬂ e

=2y, (1) =7, (1)

(3.30
where
hZSV’W(l)zf d*x v M),
hzst(1)=J d*x \gri(1),
I(1)=f d*x o ma+ ylwg), (3.3)

Q' =dim of adjoint H's,
Q"=dim of fundamentalH’s.

For the Vafa—Witten paer c. k(1) we completely follow Vafa—Wittert. Thus we have

mck(l) Xk (3.32

where y stands for the Euler number of instanton moduli space with instanton nukrdored =
means equality under keeping the vanishing theorem as shown in Vafa—Witten. Note that the
existence of the vanishing theorem in the previous section is unknown, but, in this case, we have
some examples to which we apply the vanishing thedrafthen the vanishing theorem is not
applicable, we denote this part Zﬁ;‘fﬁ(l) itself. We discuss the problem of compactification of
moduli space later.

For the transverse paZIﬁnyc'k(l), we first performH{] :Xl] integral and obtain

_(m
r 2

Second, we perforny, 4 integral for zero and nonzero modes, respectively, and obtain

dim (I’ .. g@Ker (D))

1 [det—2m)I( 1 ) m
ol

" - el 5—
(2m)% [de'(_llﬂ')](Hl;,H:]) 2m

[de'(—DZ/Zm)](wT ygnon 0 [de‘(—l)](w‘r 40 (Zw)dlm(F)\>o®KerD))
(3.39

[det —D?/4m)] (at.q)non 0 [de( m/2m) ] qt.q)0 m

Note that this expression is not exact, but is sufficient to get the right contrib{sigeEnAppendix
B).
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Collecting (3.33 and(3.34), one can obtain

m m

m | dim (T}~ g@Kerph)
m

t (m 2 dim(F;\;O@Ker(IZ)))_ 2 index(DE)
Zo o D= 5 = (335

Finally, for (e%>m,c,k(1), one carpbtain

. (3.39

- index(IZ)E). 2 index(DE)
~ Xk m

<e?’>m,c,k<1>=2¥n,cY¥<1>~z;,c,k<1>=zm<1)-(F

where= stands for results in the vanishing theorem case.

2. Result of branch 2

In this branch, the gauge symmetry is broken down td)UThe components of any field
which do not belong to the Cartan subalgebra part become the transverse variables, that is, the
components of adjoint fields, i.eT,. =T, *iT,, and the components of the hypermultiplet with
the suppressed color index become the transverse variable. One can decompose the Lagrangian
(3.9 into two parts

L~ (2)+LY(2), (3.37
where £Y(1)(2) is the Lagrangian of 1) UBTQCD, and£!(2) is the quadratic Lagrangian due
to the transverse degrees.

The UQ1) part £Y™)(2) can be further decomposed into two parts,

L£90(2)= Lognd 2)+ La4(2), (3.39

Loond2)=—HPHYE  —(F,,+3010,,a0}— X' 22V .03+ 3 4l 0,01+ 3010, 40,}

- H'qT{Hgl— Dql}—)(:fllb g, +(h.c. previous two terms-a,, 6% 6°+ g, 7+

+2(=i 3916°—aim)(i 5 63 +may) + 298 (i 5 03+ M) by —2x! (i 3 63+ m)xg,
= (=1 3017° = Al mm) g, + ¥, (1 3 7°01+ 7). (3:39
and

L51M(2)=—Hg*{Hg — (—2V*BY,,—0,c%)} —xg (- 2V#43,,— 9,6%, (340

where the first partC;§(2) is U(1) monopole theory, and the second pai!’y(2) is
U(1)B, ,c theory.

The quadratic Lagrangian due to the transverse degi&@g is
£(2)=—4/H"" +---2—8m|x\ 4|2+ 16m? 6t +- - |2—8m|pt +- |2

+uv +uv

o~ 1 .
—AZ((D3+*D3+)’”+(D3D3*)“”—Bi”pBin—EﬁIU“U”ﬁﬁ(—("Cs)Z

+16mm)g~”

1 ~a o~
At gm i [<D3**D3*W+<D3D3*W— BB,

1 o -
- Eﬁia“v”ﬁ1+(—(c3)2+1&nﬂg’”} U, —4lHg "2 8mixg T4
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—B, , {(D3T D3 *)rrgrT— 4BI B+ (- (T3)%+ 16mm)gHrg”IIB.
1 3+ 3+t*x \upnyrvo B3urp3po =312 mpN VO
+%IJIBMV{(D D ) g _4B+ B+ +(_(C ) +la’nm)9 g }lrlpr(r

o 1
—c™{D**D3-B3*'B3 ,—(€%%—16mmic +

~ 3=
+uv ﬁer{Dg*Dg_B#u 83

+uv

—(E)?—16mmpé —2[Hy + = 4m|xq, +- >~ 3a{D*'D°- 20, 5,6 0™
1 — ~ o~
+16mmiq,+ m¢;2{D3TD3+ 20,,8:G]0""+16mm} y +(cross termp  (3.41)

One can rewrite the path integr@.25 in this branch as

1

I = —
<€ >m,c,k(2) V01g3(27T)Q,

_gU(L)
f DW* Dy DO Dy DO 1 Dipgre >

_7u()
7Zm,c,k(2)

1 f [
| DWT DY, DOIDYL,, DO Difpe S TR
Volgi(ZqT)Q wW QZ wQZ Q2 wQZ

v

_ ol
:Zm,c,k(z)

(3.42

where

h2sY@W(2)= f d*x g£l(2),
h?si(2)= f d*x Vg Ll(2),

1= [ atg(akoma+ v ue,). (3.43

Q'=dim of H’'s of nontransverse degrees,

Q"=dim of H’'s of transverse degrees.

For the U1) monopole part, we have

Ul _
mono

_t f DWE D2 DQI Dyl DQ, Difrg g Smond? (3.44
Vol g¥(zm)®” ] AT T |

where

WR=A*H3 6% 6% 0, Ht

+uv? ql:
3 _ ,u3 .3 3 |
P, = VAT X5 o T W1 X1 »

(3.45
WS 2) = [ b oL
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"=dim of H’s of U(1l) S—W part.

For this part we follow H-P-B.In a simple type manifold we only need to consider the zero-
dimensional moduli space of the Seiberg—Witten monopples call them M(x)]. Here we
denote spifistructurec’ that we have already mentioned in Sec. Il C by i ¢’ satisfies the
condition of the zero-dimensional moduli spgeém M(c')=(c’-c’)/4—(2x+30)/4=0], and

we call this spifi structurex the Seiberg—Witten basic class. The moduli sp&¢€x) consists of

a finite set of points. First, for the contributions of the zero-dimensional moduli spécg, we
have

Nny, (3.46

where NV is the standard renormalization due to the local operators constructed from metric and
depends only oty and¢-2 n, is the sum of the number of points counted with a sign and is called
the Seiberg—Witten invariant. For the total contribution td)Unonopole part3.44), we have to
sum(3.46) with all basic classex and obtain

ZUhNE 847
For U(1) B, ,c part we have
290= 1 [ pwg pyd e S @ (3.48
B, (277)(2”" B, . cT”¥Wg, ¢ A '

where

Wng ,C: Blivs’Hlus’C?)’

3 _ uv3 _u3 3
g C—WBW Xxe™o €,
.

(3.49
hZSU(l) B, ,6(2): f d4x\/§£U(l)B+ ,C(z),
Q'"=dim of H's of U(1) B, ,c part.
zg<j> is the partition function of the cohomological field theory with the fixed point
v#B3 ,,=0, 4,c%=0. (3.50

This partition function is sum of thec1 when there are only isolated solutions as usual. The
condition that thezg’i1> is nonzero is that the dimensions of the moduli space of the 0 section

defined by(3.50 become zero. In fact, the virtual dimension of this moduli space is calculated to
be

A=index(d* T+ d)=3%(x+ o), (3.51

where y and o are the Euler number and signatureXgfrespectively. Thu&\=0 is a condition
that we get nontrivial results. We discuss this point later.
Finally, we obtain

z,ﬂfgk(Z):/\/zgf)g Ny. (3.52
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Now we evaluate the transverse integZérlyc,k(Z). Following H-P-P°® we choose a unitary
gauge in which

0.=0, (3.53
where

0=6T3+0"T +6 T . (3.54

In this gauged has values on the maximal tor@8artan subalgebyaBy following the standard
Faddeev—Povov gauge fixing procedure, we introduce a new nilpotent BRST op#vatbrthe
algebra

56.=+*iC.0;, 6C.=0, 86,=0, 8C.=b., &b.=0, (3.55

whereC. andC. are anticommuting ghosts and antighosts, respectivelybanare commuting
auxiliary fields. The action for gauge fixing terms reads

1 _
sm,gauggz):amf d*x Jg(6,C_+C.6_)
1 4 . - <
=WJ d X\/6{0+b7+b+9,+|C+03C,+|C+03C,}

1 .
:Wf d*x Jg{6,b_+b,6_—C,2mC_—C,2mC_}. (3.56

From the second line to the third line, we take a weak coupling limit and regfedth 2im.
Note that this action has ghost number 0.

Now consider the transverse part involving adjoint fields. We performC..,C.. ,0~, 7"
integral and obtain

[detim)] 2422 de( — 2)] (22 de*(li;nz :/Z[de(—8m)]§{§
Q
= [det2mrm)]42= (2m) (12 dim (3. goKer (D), (357
(i) HI ,xT integral:
[de{2mm) 13, = (2mm) 2 dm (@ oo Ker037)), (359
(i) Hg , xp integral:
[de(ZWm)]gf=(27rm)<1’2) dim (Q} - g@Ker (D3* + D)) (3.59
(i) A*, 4~ integral for nonzero mode:
[de(—(D3D3*+D3+*D3+)/m)]5§0n . 0 12 0.\ (112 dim (OF_ )
[det—(D°D¥* + D3 * D% )2m)]}E  ~ de(? 0 O:(H) (3.60

(iv) B} ,4g integral for nonzero mode:
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[de(—(D3+D3+*)/m)])l(/§2non . [ (277”1/2 (277)(1/2) dim (227 )
= — =|— 3.6
[de(—(D3*D3"*)/2m)]2% m/Jgee im (3.6
+non 0 non
(v) ¢™,&* integral for nonzero mode:
172
[dei —(D3* D3)/m)]§§On |y (277 12 (277)(1/2) dim (09 ) a6
= e _— = — .
[de( — (D% D3)/2m) ]2~ m /g —im
non 0 non

Now we collect all the contributions of the adjoint transverse part and obtain

_ (Zﬂm)(1/2)dim(QS>O®Ker(D3))(Zﬂm)(UZ) dim (2% joKer (D37*))
(277)Qado

2.7\ (112 dim (0} o)
| :

X (27rm)(1/2) dim @y j@Ker (D3 +D%)) (_

27\ (12 dim @2t
m )

X =1. (3.63

277_) (112) dim (29 _ )

m

The remaining transverse integral is a fundamental part. First we perform!]tp,e(gz inte-
gral and obtain
m
det —
a

Next we perform theqz,z,qu integral for nonzero and zero modes, respectively, and obtain

- 7\ dim (U geKer (D3))
det — == :
m/j., m

L [det—aml,
(277)Q§'un [del(— 1/77)](ng ,Hé) a

(3.69

( m) dim (T, - g Ker (B3 1)
r- a

_mt
[de( )] D/4m)](¢;f]21¢q2
[de( =D D/4m)](q] 4,000 [AEC—M/T)] (] 4y,

[det=D)s} g0

)non 0

(3.65
Collecting (3.64) and(3.65, one can obtain
m\ dim (T, g@Ker(@3)h) | dim (. geKer (D) —\ index(D?)
g a -7 (360
From (3.63 and(3.66 we obtain
t - index(D3)
Zmex(2)=|— (3.67)
Finally for (€')m.c.x (2) we obtain
T index(IZ)3)
<e'>m,c,k<2>=zzf§?k<2>~z$,c,k<2>=N(E) Zg V2 ny. (3.69

3. Synthesis

As we have already mentionede')myc,k itself is zero. However, from the previous two
paragraphs, each branch has nontrivial contributions. Thus we have finally
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20 indele)E T indexD3 20 indexIZ)cE T indexD3
O_zV*W _ _|_./\/Z Ny | — = | — +NZ Ny | — ’
mek” | "m B+§x: x\'m Xk " B+§ “\'m

(3.69
where the last expression is valid in the vanishing theorem case.
In general inde®¢ is calculated to be
] £ rank(E)
indexD;=—k+ 8 (c-c—o). (3.70
In this case,
c-{=—indexDE+2A. (3.70

The Dirac operatoB?, which operates onlz, ¥q,, and so on is necessary to be understood as the
Dirac operator with the connection given by-2{. Then,

indexD3=0+3((c—2¢)-(c—2¢)— o) (3.72
=1(c-c—4k+4 indexDE—8A— o). (3.73

Thus we obtain a relation
indexD®=indexDE—A. (3.74

Inserting(3.74) into (3.69, sincem is a free parameter, we get a nontrivial result only in the
caseA =0. Remember thai is also the dimension of the moduli space ¢i\B, ,c theory. Thus
the conditionA=0 is consistent with defmmg‘(u(l in (3.48. A=0 is also consistent with

geographic condition, for example, simple type condititj £3), Furuta theory l§,=5/4 ¢
|+2) and 11/8 conjecturebp=11/go).*4*°
Finally, under the conditiorA =0, from (3.69 we have

mck /VZBZn

1 |ndexIZ)E
H o3

Note that above satisfies thak-x=(2x+30)/4 andx=(c+2{)/2.

We think of the Vafa—Witten partition as the sum @75 with weight e™, whereris a
parameter. But the sum of this partition function does not clarify modular invariance Aince
=0 is a special case which does not depend on the couplinghe topological twisted modeél.
Additionally, we do not assume duality. Then there is no guarantee that our partition function has
modular invariance and is the same as Vafa—Witten’s. We suppose that the difference comes from
compactification of the moduli space. We do not use the duality relation and our model is not an
asymptotic-free theory. So, there is a possibility that compactification in our theory is not the same
as the one in the Hilbert scheme. Thus we can describe the twiste#l Yang—Mills partition
function that may not be the same as Vafa—Witten's partition function with Seiberg—Witten
invariants. Our expression is similar to Dijkgraef al'® The most significant difference is
dependence. Theirs isdependent, while ours is independent. The reason why their partition
function depends onis that they treat the physicBl=4 Yang—Mills theory itself. According to
Labastidat® the N=4 Yang—Mills theory depends on On the other hand, we treat UBTQCD,
which is the twistedN=4 Yang—Mills theory coupled with a fundamental hypermultiplet. As we
mention earlier, this difference may cause breaking of the modular invariance. In other words, our
theory is not conformal invariant, andis not possible to be a good parameter. However, our
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computation is done without an assumption like duality relation. If there is a difference we have
to interpret that the origin of the difference occurred from compactificdfion.

IV. CONCLUSION

We have studied the balanced topological QCD and its broken balance theory and obtained
relations of the partition function of twiste=4 SU?2) Yang—Mills theory with the partition
function of twisted Abelian QCD. This relation is understood in several ways. For example, the
sum of Euler numbers of instanton moduli space, which is invariant under ZL{@nsforma-
tion, is described by Seiberg—Witten invariants widen 0 and the vanishing theorem is valid. In
other cases there is no vanishing theorem like 85.4 in Ref. 1; we obtained similar but not the same
formulas under the condition &= 0. There is no other reason to understand the difference from
the result of Vafa, Witten and Dijkgraat all"'° than the difference of compactification.

Some problems are left for our future work. Wh&e: 0, can we obtain any similar nontrivial
results without assumption of duality relation? We may obtain them by simple reformation. How-
ever, it is difficult to expect that the partition function has the nature of modular invariance in
naive reformation. We are interested in a connection with the duality and a compactification. How
can we obtain the modular invariant partition function with no assumption of duality? We have
some hints of this question but no answer.

As we saw in Sec. I, the vanishing theorem of BTQCD is not studied in this article. If the
theorem exists, we get the sum of Euler numbers of non-Abelian monopole moduli space as the
partition function of the BTQCD. It is interesting work to investigate the nature of the partition
function because the theory has the branches that contain both Vafa—Witten theory and Seiberg—
Witten theory.
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APPENDIX A: THE BRS ALGEBRA AND THE BTQCD ACTION
We give the BRS algebra and the Lagrangian of BTQCD explicitly in this appendix.

1. Algebra
The 6, transformations are as follows:

_
O_AL= Xy

S_x4=—08A,=-D,0,

- gl o~ (A1)
S_h,=— A, —Hp =—D,c—Hp ,
I iz
5_Hp, == x5, + 5. OgA.= —ilxp, .1+ 5. SGA,
o-BA" =y,
o_x'{"=— 58" =~i[BL", 4],
(A2)

S_yh'=—ogBL —H!t"=—i[B4” c]-H!",

S_H'M'=—5ox'"+ 5. 5gBLY = —i[ X't .c]+ 8, 8yBY";
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T
0-q“=xg",

5-XB"= 549" =i6q"+Mmg",

' . ' (A3)
S_ihy= 559" —Hg“=icq™+mq*—Hp®,
5_Hp"=8Gxp"— 8. 80" =icxp"+me— 6. 550
8_B.=Xga:
8_X4ya=0UB,=16B,+MB,,
(A4)
8_g,= 6B, ~Hy,=icB,+mB,—Hy,,
8_Hio= S5Xta— 0+ 0yB 4= iCXgat McXge— 0+ 84By;
5-90=xg1,
5 Xpa=oqaL=iqlo—mal,
T T It T T It (AS)
8- 1q,= 00, Hg,=10,C—mcq,—Hg,,
S_Hyl=8%xgi— 8,000, = =i XpaC—Mexn, — 04 000 ;
5—BTa:XI(]Ta1
8_xy“=oyBT*=—iBT"9—mB',
(AB)
S_yi* =BT —H = —iBT*c—m BT~ H™,
S_HY =Sy = 8, 0BT =i xi "c—meyy “— 8. 55BT.
The 6, transformations are given by
S A=,
— <0 _
8. b, = 9A,=D,0,
(A7)

5+Xg,u: Hg,u.’
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5. BH=yb

8.yl =oyBL =i[BL”, 6],

(A8)
5+Xl,uv H|+,U-V’
8 HI= =iy ]
5+qd=¢§,
8:¥3= = 830G =~ (16qg +mcf).
(A9)
5+ Nea__ Hga,
S HE "= — o0xB "= — (i X"+ mxp);
Ba:lpBa'
5+¢Ba: - 5gBa: _(I aBa+mBa)’
(A10)
5+an HLI“'
8+ Haa=~ 0Xaa= ~ (i OXgat Mqa);
5+QZ:¢Z¢
t 0
5+¢qd _5 __(_Iq 0= mq)
(A11)
5+ xga=Hea:
S Hyl=—80xul=—(—ixp 0—mxp.);
5+BTa:¢/Ea’
8. "=~ 5yBT*=—(~iB'*g—mB'"),
(A12)
5+X|Ta H|T0z

5+H::]Ta:_5gquTa _(_|X|Ta0 leTa)

Transformations foc, 6, 6, m,m;,m are given by
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5+ 6:0,

s_0=¢ &8.&=s8c=i[c,0],

5.c=¢ o &=0820=i[6,0],

(A13)

s_c=7, 5.n=3540=i[6,0],
5. 0=n, 5,n=5§c=i[c,§],
5_6=0;
8, m=0,
S.m=¢&n,  0.Em=0,
S,me=£&n,  O_Em=0,

(A14)

0-Me= Ny, 04 Mm=0,
04M=17ny, 6-17u=0,
6_m=0.

2. Action of BTQCD

We write down the Lagrangian of BTQCD explicitly in this paragraph.
Here 6_Fis given as

S_F=06_(BH"s% ) — 8_(X"*YR,,) — 8- (xpayt®) + 6_(—i §BA[B. ,,.B . ,,1%0")

+6_(B8,) = 6_ (X “Wpa) = 6_(Xpathd) + 6_(sTB,) + 8_(¢Lx4)

+ (Ul XB) + O (£ (A15)

= —x{HE,,— (T, —i[By . Bi e l?0? —i[B, ,,.C]Y)}
—x'1"{Hgs—(2D#B% ,,+iB'o, T —iq"o,T°B—D,c?)}

— X" {Hy,~ (s,+icB,+mB,)} — xpi{HE“~ (—(D'B)*+ ("B, ,,0)
+icq*+meg®)} —{Hy *— (s"*—iBt*c—mB)} b, — {Hg — (- (D'B)]
+(q"By 0™ —iqlc—meal) b xi“+{i[ 60,6127 —i € c, 017} +i[ B 0193,
+D,, 62— (—iB'“9—mB'®) g, — (—iql6—mq) v

— (i 6B ,+MB,) — ¢ - (1 09+ mMq®). (A16)

The full Lagrangian is given as
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=5 5 F (A17)

= —HHE = (53,7 1[B 1y B uo 2977 =By ]} = X7 =X iy 617
+2D Y5+ Y0, T+ a0, T = 2i[B ), 8101207 — i [ ¥, €12 [ B 4y 1%
—Hg"{Hgs —(-2D#B} ,,+iB'o,T?%q—iq"o,T°B—D,c?)}
—xg il xB, 01°— 2Dy}, — 2i[ ¥ B, P +igho, Tq+iB o, T2y —iylo, T*B
—iqTo, Toyg—D, & ~i[ 4, ,c]% —Hy “{Hy,— (s, +icB,+mB,)}
— Xy iD g+ o, i P q+iEB+icyg+ EB+ Mg+ (h.c. previous two terms
—Hp {HE“— (= (D'B)“+ (0B ,,)“ +icq™+meq)}
= X8 {= D g — 0, B+ (07 g, Q) + (7B, thg) +1 €Q+iC P+ €+ Mot}
+(h.c. previous two terms-{[ 6,817 6, H]a—[c,a]a[c,e]anL[BﬁV,0]a[B+W,0]a}
+D , 6D P+ 6, n] 7 +i €&, 617+ L, n]*+iluh”, 0103, +1[BL ] YR,,
+D, PP+, , 0172+ (—iqTo—q M) (i 6g-+ma)+(—iq"o—q'm)(i 6q+ma)
+ 298 (i 6+ M) thg— 2x1 (1 6+ m)xh— (=109 0 7 g+ Ui 9A+ 700)
+(-B'6o-B'm)(iB+mB)+(—iBT9—B'm)(i 6B+ mB) + 2y k(i 6+ M) g
2xp " (10+m)xg—(—iBTn—B ) g+ (i 7B+ 7B). (A18)

APPENDIX B: THE PATH INTEGRAL OF THE TRANSVERSE PART

As we have mentioned in the first part of Sec. 11l D, the path integral in Sec. 1l D is not exact,
but it amounts to the right result that we will derive in this section. In computation, we take the
weak coupling limit. When we replace the nontransverse fields with the fixed point values, we

denoteYnom,ansby Y nontrans 1N particular, the fixed points o, 0 are given ag)= =0 in branch

1 and@*=2im, #=2im in branch 2. We also discuss the different treatment of the path integral
in Il D at the end of this section. See Ref. 17, too.

1. Branch 1 and its big matrix

In branch 1, the path integral of the transverse part is

Z:Tl,c,k(l) (2 )QH f IDQTDwQDQDd/ € S l)+l(l)v (Bl)
where
hZSt(l)zf d*x \gcl(1),
(1= [ @t gt ma+ ).
Q"=dim of fundamentalH’s. (B2

For £'(1)(3.29), we denote
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1 1
LH(1)==2[Hg+ 2= 2mlxg+- 2= 5a"MP(1)a+ 5 M (1) g, (B3)

where
MP(1)=Mf(1)=D'D+4mm (B4)

In general, MP(M) is a matrix and is not necessarily diagonalizst? andM' may not be the
same as we will see soon. We chll’(1) the big matrix of branch 1.

Before computingB1), we briefly review the notion of indeR.

One can decomposge I'*, HyeI'~ into

D'Dg*=rg*,
(B5)

N

DD'HY =\H)}

This decomposition is called spectra decomposmon Note thatsiD, theng* and HI are

isomorphic. However, ih=0, theng* and HI are not isomorphic. The indéx measures the
difference betweetr,_, andT',_,, and is defmed as

indexD=dim T'y_,—dim T',_,
(B6)
=dim KerD—dim KerDT,

where we denot&';_,=KerD, I';_,=KerD".
In computing(B1), (B6) emerges when the nonkinetic part and the off-diagonal pavt afe
able to be ignoredin this branch, simplymm terms in (B4)]. This process is achieved by
diagonalization and field redefinition. Then we obtain the expreg8itthas indexXd. Conversely,
it is enough to obtain this expression that we consider only the kinetic diagonal pdrirothe
path integral.
Now we perform the path integral of the transverse part of branch 1 explicitly. First, for the
1 [det—2m)]r

Hy. Xy integral,
m m | dim@ ;- geKer(@™)
(2m)®" d( 1) -\ (277” (5) ' (87
e _——
an

Note that the transformation at the second equality is necessary to derivddindex
For theq, ¢, integral for nonzero-mode,

It
(Hyq ,Hq)

[de‘(—|z)2/2m)](¢,+'l/,q)non o (27 dim(T; o)
A =( ) . (B9

[de(—D%4m)] gt q),,, m

For theq, ¢, integral for zero-mode, we consider that the integrant of this path integral comes
only from observablé (1) and we obtain

[del — 1)]@1 Yoo ( 277> dim Ker(IZ))' (BY)

[de(—m/2m)] (gt q), m

From (B8) and (B9)
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(277) dim(T'y . @ Ker (D))

= (B10)
Collecting (B7) and (B10),
m dim(T'; - g@Ker (D1)) 20 dim(I'y . @ Ker (D)) 2 77\ indexd
Z:n,c,k: E) (F) :(H) . (B11)
Note that dim "y~ ) and dim ;) cancel each other.
2. Branch 2 and its big matrix
In branch 2, the path integral of the transverse part is
zt (2 =—,,JDWiD EDQIDYL , DQ, D, 5212, B12)
m.e.k(2) Vol G* (2m)° YwDQ; Dy, DQ2 D2 (
where
h2si(2)= J d*x gLl(2),
(B13)

1(2)= f d*x\g(az2ma+ g vq,).,
Q"=dim of H’s of transverse degrees.
For £'(2) in (3.41), we denote

LY(2)=—4[HY +--[2=8m[x, +- |2+ 16m?[ 0" +---[2—8m| " +---|2—4[HE " +- |2

1
_ I+, ...12_ | L2 | 2wy Tpb T Vi
8Mlx (2= 2]+ = aml g+ P YTMP(2) Y+ 5 WM (2

(B14)

whereYT and ¥, are raw vectors,
Y'=(A; BT, .c".a}), (B15)
W=y e €0, (B16)

andY andW¥ are column vectors,
Y=(A, ,Bi,s5C .02), (B17)
V=g ¥ys: € ¥g,)- (B18)

To derive the result3.67 from (B12) and (B14), we can neglect the nonkinetic terms and
off-diagonal part oM (2) (we will give these explicitly later There is the contribution from the
Faddeev—Popov determinant @f =0 gauge and it is possible to discard the path integradof
for zero-mode according to the balanced structure of adjoint fields.

In this remaining subsection, we concentrate on giWihR) explicitly. M®(2)(Mf(2)) can
be decomposed into
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b b
Maa  Maq

M2, MP

. (B19)
qtA a'q

MP(2)=

We denote the matrix element of MP(2) (or MRA,MRq,META,MZTq) by
{MP(2)}A B IMB AT, etc,
a. Diagonal part of M °(2)(M'(2))

MR A = M

:(D3+* D3+)#U+(D3D3*)Ma_§iup§3jr¢;’

— 381070 T+ (— (€)2+ 16mm)g-”. (820)

[MB BB = (M B 78
= (D3 D3+*) g7 — 4B3PB 270+ (- (T3)2+ 16mm)g*°g”’. (B21)
(MBS ={Mi ¢ =D¥*D3- B3B3 - (€%)?— 16mm (B22)
M0 19'9=D3"D3~ 25, G,q]o*” + 1emm (B23)
Ml 19'9=D3"D3+ 25, G,q]o*” + Lemm (B24)

Note that{Mgfq}qTq and{M;Tq}qTq are different.
b. Off-diagonal part of M 5 ,,(M, )

{MRAA B = MR

—

— I( D3+ )V'63g;¢pgwr_ ZiEiMp(D3+* )p

— —

—i( D% )#B%7—2i( D3" ), B3#rg"7. (B25)
{MB AT e =(MB JA e = —j( D3 ) B3 —2iB%#*(D3),+i( D )*T3.  (B26)
{MBAIEH " ={MRAIE- e =(D%**)"(D)r — 26°B . (B27)
c. Off-diagonal part of M §,(M},,)
Here using
Y==1(Y1FiY?), (B29)

we denote{MB.}Y "%, {MB 1Y and {M}}Y 9 {MA Y instead of{MB )" 9 {M},Y 9. The
reason why we cannot denot«{zM'j\q}Wq,{MLq}wq is that there are terms DCA;

—D3AY) . a30%"G; andi(D3q,)TA™T; that exist simultaneously i6'(2) in (B14). The remain-
ing elements of this matrix are

— —

1 S— . ~F— . —~
(MR 9= —3( D% )glo,,—i18lo,D%—i $( D3 )], (B29)
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— —

IMBJA" 9= —i 1( D3* )Glo,,— $lo,D3— 1( D3 )+g], (B30)
(M= (D3 )a,,~i Flo,D°—i 1( D3 )], (831)
M2 JA™a—i L( D3 )la,,~ blo, D%~ 1( D> )], (832)
(MBJ8""9=—i 1e%glo7r+ 1 B3 va ]+ BY,o7al, (B33
(MB 15" a=teglove—i 1B3 gl - B2 o), (B34)
(MEB 9=i Se%g o+ 1Bl - iB2 romral, (B35)
(M5 "0= — 1235 o —i 1B3g]+ B2 roral, (B36)
{MBJ°9=i 1B%7,, 4] - i1, (B37)

(MB 0= —1B%5, gl+i teql, (B39)
(MigJo9=—i $B%5,a]- iz, (B39)
{MAgJ<9=3B%"7,,a]+i 1%]. (B40)

For (B29)—(B40), one can find the relation

{ng}Y1‘*)_< 0 i) {MM“‘*)
Mig ) =i o/ {mRga)”

Using the explicit matrix elementB20)—(B40), we can perform the path integréB12)
directly, instead of neglecting the nonkinetic off-diagonal pam/®{2)(Mf(2)). Then we have a
crucial obstacle from the difference betwe@23) and (B24), while the obstacle froniB29)—

(B40) is resolved by the relatiofB41). This obstacle tells us that the contributions fr@23) and

(B24) is not 1 and that the resulB.67) is effective up to order of square @f,. (In fact, this
problem does not appear when we treat adjoint matter instead of fundamental matter. Thus we
think that this problem comes from the choice of the representation of matter)fidtusever, the
contributions from(B23) and (B24) becomes 1 in thg;—0 limit after path integration. Thus we
estimate the contributions froiB23) and (B24) to be 1 in the case that the reszﬁwk(Z) in

(3.67) is topological. This is why it is enough to estimate the path integral with the indices that
only the kinetic terms in the diagonal block are counted from the big matrices in Sec. Ill.

(B41)
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In this article the inverse scattering problem of reconstructing the energy dependent
potentiali VEZ—m? P(x) + Q(x) of a Schralinger equation on the line from its
reflection coefficients and bound state déta., poles of the transmission coeffi-
cients and associated norming constamgssolved using the Marchenko integral
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[. INTRODUCTION

In this article we study the inverse scattering problem for the generalized 1-D diuteo
equation,

" (k,x)+[k2+m? gk, x) =[ikP(x) + Q(x)J#(k,x), xeR, (1.2

where the prime denotes the derivative with respect to the spatial coordinatés the wave-
number,m is a positive mass paramet&(x) describes the energy absorption or generation, and
Q(x) represents the restoring force density. The quaiitityyk?+m? stands for the energy.
Letting C* andC~ stand for the open upper and lower complex half-planes and defining the
regionsQ " =C*"\i [0,m] andQ~=C"\i [ —m,0], for a suitable choice of the square root one can
use the mapping = Vk?+m? to transform either of the regior®* conformally and bijectively
into either of the region&™, thus yielding four transformations. Using the inverse transformation
k(E)= VE?—m? we obtain the two-fold Riemann surface with branch cuts along the real line
from m to + and from—m to —«. As we are interested primarily in the domdir:= C* UR, it
is natural to defin&(E)=\E?—m? as a single-valued continuous function B& C*UR with
(K(E)/E)>0 for E e R\[ —m,m], so that Ink(E)>0 for E e (—m,m). We then write(1.1) in the
equivalent form

¢ (E,X) + B2~ (E, ) =[£i k(E)P(X) + Q(x)]¢~(E,X), 1.2

wherexe R andEe C*.
Let us define the Jost solutiofis (E,x) andf, (E,x) as the solutions ofl.2) with the + sign
in the first term of the right-hand side that satisfy the boundary conditions

f7(Ex)=€F*+0(1), x—+x,
_ (1.3
f (Exx)=e '®+0(1), x— —o.

3Electronic mail: cornelis@unica.it Research supported in part by INDAM-GNIM and MURST.
Electronic mail: v.pivovarchik@paco.net, vnp.@dtp.odessa.ua Research supported in part by INDAM-GNFM.

0022-2488/2001/42(1)/158/24/$18.00 158 © 2001 American Institute of Physics
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In terms of the Jost solutions, the scattering coefficieftéE), a, (E), b, (E), andb, (E) are
defined by

fi (E,x)=a; (E)e'®*+b/"(E)e 'B*+0(1), x——,

_ _ (1.9
f (E,xx)=a, (E)e "®*+Db, (E)e'F*+0(1), Xx— +o=.
In this article a fundamental role is played by the transformation
9" (B)+g (E) _g"(E)-g (E)
9:1(E)= B E— 92(E)= TT2kE) (1.9

between pairs of functions &. This transformation allows one to convert the pair of uncoupled
differential equationg1.2) into the coupled system of differential equations,

l,//Z(E,X) l/fl(E,X) — lrljl(E’X)
Lﬂé(E,x) +EZ[zAZ(E,x) =EEX) x| (1.6
where
E(E,X)= Q(x)  —k(E)*P(x) (17)
TP Qe :

andk(E)?=E?—m?. Transforming the Jost solutions as(ih5), we obtain from(1.3) and(1.4),

fl(E,x)=€eF*+0(1), f(E,x)=0(1), X— -+,
. (1.9
f(Ex)=e '®+0(1), f(E,x)=0(1), X——0s,

fis(E,x)=a,s(E)e®*+b(E)e B+ 0(1), x——o,
. , (1.9
fis(E,X)=a,s(E)e 'B*+ b (E)eF*+0(1), Xx—+,

wheres=1,2.

The direct and inverse scattering problems for Sdimger equations of the typd.1) have
been studied extensively. Jaulent and Jelstudied(1.1) with m=0, imaginaryP(x) and real
Q(x), both on the half-line and on the full lingroblems leading to unitary scattering datnd
established the unique solvability of their Marchenko equations. JAutemived Marchenko
integral equations leading to the solution of the inverse problen(ifd) with m=0 and real
potentialsP(x) and Q(x). Sattinger and Szmigielskstudied(1.1) with m=0, imaginaryP(x)
and realQ(x) and applied the results to solve a nonlinear evolution equation. Aktesatf’
studied in detail the direct and inverse scattering problemd¥@® for m=0, obtained many
results on the discrete eigenvalues, and gave sufficient conditions for the unique solvability of the
Marchenko equations.

The more interesting case whare>0, was taken up by Kag in connection with a non-
linear evolution equatioria long-wave water equation resembling the Boussinesq equalion
Ref. 9 a pair of coupled Marchenko integral equations was given to solve the inverse scattering
problem. Under the assumption th&t..dx P(x)=0, Sattinger and SzmigielsRiconsidered the
direct and inverse problems f¢t.1) with m=1 andC” potentials and applied their results to a
nonlinear evolution equation. Equatiéh.1), with k?+m? andikP(x) replaced byk?—m? and
kP(x), respectively, for real potentiaB(x) and Q(x), is the 1-D Klein—Gordon equation. For
this equation and on the half-line, Corinald&sDegasperis? and Weiss and Schaffstudied the
inverse scattering problem and Pivovarcfiistudied the number of bound states.
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WhenP,Q e L(R), the Schrdinger operators ifi1.2) have very different properties depend-
ing on whethem=0 orm>0, since fom=0 their essential spectrum is the sekef R whereas
for m>0 it is the set ofke RUi[—m,m]. Moreover, as observed in Refs. 8 and 9, the 0
equation is important for solving a certain system of nonlinear evolution equations by the inverse
scattering transform, whereas no such connection is apparent=f@.

In this article we analyze the inverse scattering problem(fd? by the Marchenko method.
Essentially, although most of the scattering solutions and scattering coefficients are defined as in
Refs. 6 and 7 where then=0 case was treated, we differ from these papers in one important
aspect: We also define the scattering solutions and scattering coefficient41a§ wWvere the
equation of interest rather thdf.2). The Riemann—Hilbert problem relating the usual Faddeev
solutions, as studied since the seminal papers by Fafftlard Deift and Trubowit2® and the
Marchenko integral equations obtained by Fourier transformation are derived for quantities that
are primarily connected witfiL.6). The relationships between the two approaches are explained in
detail. The advantage of the new approach lies in the behavi—as-m. In this case (1.2
approaches two copies of the 1-D Sdfirmer equation on the line with real potenti@(x),
whereas(1.6) tends to a nonselfadjoint matrix Schiinger equation that also involvé¥(x). In
principle, this new approach could also have been applied to thersas® a possibility not
observed before. It might then be comparatively easy to study the behavior of the solutibrg of
asm—0*.

Let us discuss briefly some of the differences between Ref. 10 and the present paper. In Refs.
9 and 10 theE andk variables are transformed into the complexariable by the conformal
mappingz=E+k=m?/(E—k), wherem=1 in Ref. 10. The complex-plane is then divided into
the regions/, ={ze C:|z|>m and Imz>0}U{zeC:|7<m and Imz<0} andi/_={ze C:|z|>m
and Imz<0}U{ze C:|7<m and Imz>0}, separated b ={ze C:|z|=m}U(R\{0}). The inverse
scattering problem is then posed as a vector Riemann—Hilbert problem on thectivaerelates
vector functions analytic ia/_ to vector functions analytic ity, . The unfamiliarity of the curve
3, however, makes it hard to replace these Riemann—Hilbert problems by equivalent integral
equations. For this reason we have decided not to use Hagiable.

Let us now discuss the contents of this article. In Sec. Il we introduce and study the scattering
solutions and their asymptotic properties|BEs— . We also derive the continuity of the scatter-
ing solutions for(1.6) asE— *=m. In Sec. Il we introduce and study the scattering coefficients
and their asymptotics d&|— . Their behavior a&— + m is also obtained. Their asymptotics as
E— 0 is found using the recent results in Ref. 17. It follows in particular that the scattering matrix
is unitary if Ee[ —m,m], something that can also be derived from results in Ref. 10, and has
certain contractivity and expansivity propertie€i& R\[ —m,m] andP(x) does not change sign.

In Sec. IV an idea by Weiss and ScHaiis employed to derive Marchenko integral equations for
(1.6), both in the absence and in the presencéinitely many) discrete eigenvalues. Any solution

of one of the two coupled systems of two Marchenko integral equations allows one to uniquely
determine the potential(x) andQ(x), provided the second one of the pair of functions being a
solution has its values in{1,1). In Sec. V we relate, as in Ref. 7, the unique solvability of either

of the systems of Marchenko equations to the existence of a canonical Wiener—Hopf factorization
of a 2X 2 matrix function on the line.

II. JOST SOLUTIONS AND FADDEEV FUNCTIONS

In this section we introduce various scattering solutions(ioB) and (1.6) and study their
symmetry and asymptotic properties.

A. Analyticity and symmetry properties

Let P,QeLY(R). Then the Jost solutiorfs (E,x) andf,(E,x) satisfy the integral equations

. 1 (>
(B4 2 | aysinE( -0l HIKEPY+HQWIEX: (1)
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. 1 (x
fr(Ex)=e &+ Ef_xdySin{E(X—y)}[ii K(E)P(y)+Q(y)1f, (E\x). (2.2

Using the 2<2 matrix E (E,x) introduced in(1.7), these integral equations are easily transformed
into the pairs of coupled integral equations,

coq EXx) .
fli(EX)| | o = SIfE(y—x)} _ fl(Ey) |,
M e o[l e ey
(E)
cog EXx) .
fra(EX)| | x sifE(x—y)} _ fra(E)y)
[frz(ny) =| snEo |+ [ ay T ”(E’y)[fQ(E,y)}
k(E)
Defining the Faddeev functions, (E,x) andm, (E,x) by
m (E,x)=e "®f"(E,x), m;(E,x)=e5f"(E,x), 2.3
we get from(2.1) and(2.2) the Volterra integral equations,
. o e2iE(y7x)_1 .
mr(E,><)=1+fX dy —— = [=1k(B)P()+Q(y) Im (E,y); (2.9
X eZiE(x—y)_l
m; (E,x)=1+ j_xdyT[ii k(E)P(Y)+Q(Y)Im (E,y). (2.9

Using (1.5), these are transformed into the pairs of coupled integral equations:

miﬁgﬁi :[é +fjdy%5(&y) 2:;22” 2.6
o e o RS
By differentiation with respect ta we obtain
m:&iig =—f:dy eZiE(yx)E(E,y)m;EE:m; (2.9
Ei:i = [[ayesnzey) pey| @9

In the next theorem we state the analyticity and continuity propertieg8E,x), m,s(E,x),
fis(E.X), f.s(E,s) and their derivativesg=1,2). Such results will then also hold fax (E,x),
m, (E,x), f; (E,x), f, (E,x) and their derivatives.

Theorem 2.1:Assume FQ e LY(R). Then the following is true

(1) For xe R and s=1,2, the functions my(E,x), m,s(E,x), m/s(E,x) and nf(E,x) are analytic
in C* and continuous in:*\{0}. Consequently, for eachR and s=1,2 the transformed
Jost solutions £(E,x) and f,s(E,x) and their derivatives {(E,x) and f{;(E,x) are analytic
in C* and continuous i-"\{0}.

2) If P,Qe Li(R), the continuity of the functions ifi) extends taC*.
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Proof: Let Ee C*. For large|E| it is expedient to iterate the four integral equatié®s) and
(2.5 for m;"(E,x) andm,”(E,x), while it is more convenient to iterate the two syste{@$) and
(2.7 asE—=*=m.

First, using the estimate

VIIE[*=m?[<|k(E)|< VIE[*+m?,

one obtains the auxiliary upper bounds:

1
Q2Ely—X_ 2[P(y)[+ —1Q(y)l,  [E[=m,

—2E “ik(E)P(y”Q(y”‘s (MvZ [P(y)|+|Qy))IE], |El=m,
ly=x|[mv2 |P(y)|+|Q(y)[], [E[]<=m.

In analogy with Refs. 15 and 16 we obtain the estimates

1
x| 21PL,+ Tl [El=m,

m-(E,x)|<
I EX1=Y e (mva [Pl + [QI/ED.  El<m,

[1+max0,—x)]exp(mv2 [Pl 1+[Qll1», [E[<m,
and hence
max(|m;" (E,x)[,|m (E,x))<c;

max(|m;™' (E,x)],|m7™" (E,x)) < csco(|Pl+ QI L+[E[T,

wherec,= e°1IPli+IRI)/MNAIE) gnqc, = max(2mv2,1/m), as well as
|mi"(E,x)|<[1+max0,— x)]eIPl:IQl0; (2.10

Im”" (E,x)|<cacs(|Plla+[Qfl [ 1+ [E[][1+max0,~x)], (219
wherecy=e1IPl1:1Q1)  The proof form:"(E,x) andm;"’(E,x), where(2.10 and(2.11) hold
with max(0~x) replaced by max(®), is similar.

Next, the derivation of the analyticity ah (E,x) and m,¢(E,x) and their derivatives in a

neighborhood of- m in C* fors=121is analogous. Here one employs the following estimate for
the Euclidean norm of the matri& (E,x):

IE(EX)[=2[Q00|+(1+k(E)[A)P(X)],

which completes the proof. O
WhenP,QeL}(R), we find asE—0,

mli(O,X)=1+f:dy(y—x)[Q(Y)ImP(Y)]mf(O,y); (2.12

M (00=1+ [ dy (-yrQ(y) F mPty)Im: (0). 213

Then(2.12 and (2.13 are the integral equations for the zero energy Jost functions of the usual
1-D Schralinger equation with potentiaD(x) F mP(x). We will call QmP an exceptional
potential(for the usual Schidinger equatioif there exists a nonzer@eal) constanty™ such that
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. mi(0x)  fi(0x)
YT mE0x)  fr(0x)

(2.19

OtherwiseQ+ mP is called agenericpotential. Obviously(2.12) and(2.13 can be transformed
into the pairs of coupled integral equations

m1(0X)] 1}+Fd __[Qw mZP(V)Hmu(O,y)}_
m20)] 10T [, O™ by oy |ma0y)]
m(0)] [1]  [* Q(y) mZP(y)} mrl(O,y)}
m,,(0x)| |0 +f_xdy(x—y) P(y) Q(y) |[m200y)]

The complicated conjugation symmetry propertiek (@) make it hazardous to state conju-
gation symmetry properties fdi (E,x), f; (E,x), m (E,x), andm; (E,x) directly. However,
sincek(—E)?=k(E)?, we immediately have fos=1,2,

fls(_EX):fls(EaX)y frs(_EX):frs(EaX)v (2.19

and similarly for mg(E,x) and m,¢(E,x) where s=1,2. Now note that K(E)/E)>0 for E
e R\[—m,m] and k(E) is positive imaginary forE € (—m,m). Thus k(—E)=—k(E) for E
eC*. Using the identitiesf;” (E,x) = f,,(E,x) +ik(E)f»(E,x) and similarly forf (E,x), we
obtain

fiE(—Ex)=f"(Ex), f (~Ex)=f (EX). (2.16

Similar relations hold fom;"(E,x) andm, (E,x).

B. Large- E asymptotics

To study the largd= asymptotics of the Jost solutions, we define

7 (E,x)=e"¢Mm"(E,x)=e BX= {0 5 (E x); (2.17)
7y (E,x)=e"PT{Im(E,x) =eBX*PT{Mf = (E x), (2.18

where
g(x)=%jjdz P(z), p= %J:dz P(z). (2.19

Theorem 2.2:Let P,Q e L%(R). Then the following statements are true

(i) For each xe R, the functionsz; (E,x) and », (E,x) are analytic inC*, are continuous in
C™\{0}, and we have for some constant C not depending on k and x

|9 (E,x)|<Ce“lEl | 5*(E,x)|<Ce” Bl EeC\{0}. (2.20

Further, as|E|— in C¥ we have
n (Exx)=140(1), 7, (E,x)=1+0(1); (2.21)

7 (EX)=0(E), 77" (Ex)=0(E). (2.22
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(i) If P,Qe Li(R), the continuity of the functions i) extends ta.*. Moreover, for E= C* we
have

|7 (E,x)|<C[1+max0,—x)], |# (E,x)|<C[1l+max0x)].

Proof: Letting z(E,x) = 7, (E,x) — 1, we obtain

@2 E(y—x) _
2(E.X)=20(E,X) + f dy—Elef[“X"“y”[ti k(E)P(y)+Q(Y)](E.y), (2.23

where

2|E(y X) 1
Zo(E X) J'dy—Eei[g(x)fg(y)]Q(y)

KEE) [ o N
_;_EJ; dyeZIE(y*X)e,[é’(X) g(y)]P(y) (1_ ( ))[eg(x)_l]

Then the Riemann-Lebesgue lemma implies thaf.sigy(E,t)| vanishes a&— + . Iterating
(2.23 we now see thaz(E,x) is uniformly bounded inC* for |E|=a>0 for eachxe R anda
>0. Using a Phragmen—Linddltheorem(cf. Ref. 1§ we conclude thaz(E,x) vanishes a&
—oin CF,

To prove(2.22 we introduce the function

“(Ex)= e m (Ex) e 0= 2= [ £ P(x) 5 (E) + 27 (E
& (BEx)=Em (Ex)ems == [P g (B X)+ 277 (E,X) |

From (2.8) and(2.17) we get

+(—)P(y)+ EQ(y) e WIpFEY).  (2.29

& (Ex)= f dy eF0=»

Thus, using(2.20, we see that the integrand on the right-hand sid€2d4) is bounded by the
integrable functiorC,[|P(y)|+|Q(y)|], uniformly inxe R andE e C* for |E|=a>0 and each
a>0, where the constai, does not depend anandE. By the Riemann—Lebesgue lemma, we
conclude that the right-hand side @&.24) is o(1) asE— *, so that by a Phragmen—Lindélo
theorem(cf. Ref. 18§ we see that the left-hand side (#.24) is o(1) asE—x in C*. Conse-
quently, & (E,x)=0(1) asE—= in C*, which implies(2.22 for #~'(E,x). The proof for
», (E,x) and 5, (E,x) is similar. O

To study the inverse scattering problem {@r2), as in Ref. 7 we strengthen Theorem 2.2 by
making additional assumptions ¢hand Q. In fact, we assume tha& is absolutely continuous,
and define the two auxiliary potential functions,

W= () =Q(x)¥ 3P’ () — 7P(x)%. (2.29

Using (1.2—(1.4) we obtain forxe R,
7 "(EX)+[2E=P()] 7 (Ex)=[W"(x) FI(E-K(E)P(X)]7 (Ex), (2.2
7 (E,+%)=1, 75 '(E,+%)=0, (2.27)

whereW=(x) is given by(2.25. Multiplying (2.2 by u;" (E,x)=e?&**2{®) we obtain forx
eR,



J. Math. Phys., Vol. 42, No. 1, January 2001 Inverse scattering for a Schrodinger equation 165

(i (E) 77" (EX)]' =i (EX) [WH() Fi(E—K(E)P(X)]7i (E.X). (2.28

Integrating(2.28 and using(2.27) we get
S(Ex=— [ Tdy @0 OW () Fi(E-KENPY) 17 (Ey). (229
Integrating(2.29, using(2.27) once again and changing the order of integration, we find
nf(E,X)=1+Lwdy G (E;x,y)[W=(y) Fi(E-K(E))P(Y)]%i (E.Y), (2.30
where we have defined

G (Epxy)= [ dz E0-n=rkird
X

2 E[EZIE(y X) = [YdzP(2) _ 1]+_f dz P(z) e2E(Y-2)= jydzP(z)_ (2.30)
i

Similarly, using(1.2—(1.4), (2.17—(2.19, and(2.295 we obtain
7 "(Ex)—[2IEXP(X)] 7, "(EX)=[W*(X) =i (E-K(E))P(X)]7; (E)x), (232

7o (E,—0)=1, 57" (E,—»)=0. (2.33

Integrating(2.32 twice and using2.33 we first get
7 (Ex0= | dy @O (y) i (B KENPY) 77 (E),
and subsequently
yiEx=1+ [ dy G (Exy) (W ) IE-KENPYI (Ey), (234
where we have defined

G, (E;x,y)= fxdz PIEE-Y) *[d2P()
y

— 1 [GZ'E(X y) =¥ P(z)dz ]_._ .

2iE(z—y)=[ dzP(z)
- 2iE 2iE dz R2)e '

Let us now employ the integral equatio(®s30 and(2.34 to derive asymptotic expressions
for 7, (E,x) and 5, (E,x) asE— in C*.

Theorem 2.3:(1) Assume R LY(R) and Qe Li(R). Then, for each fixedx R, the functions
7 (E,x) and 7, (E,x) are analytic inC* and continuous ir:*, and

n(Ex)=1+0(1), 5 (Ex)=1+0(1), E—w»inC*.
(2) Assume that W,W~ e L(R). Then as E> in C* we have

2 (Ex)=1+O0(1E|), 7 (Ex)=1+O(1/E]). (2.39
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(3) If further we assume BLi(R), Qe L3(R) and W* e L1(R), then

[xdz W (2)

7 (ExX)=1-=—=——+O(L[E[*), E—> in ct, (2.36
. JX..dzW(2) ) e
n;(E,x)=1—T+O(1/|E| ), E—o in C*. (2.3

Proof: We only prove(2.39, (2.36 and (2.37), because the rest of the proof is given in
Theorem 3.1 of Ref. 6. Note thé2.31) implies fory=x,

+ C p——
|G((E;x,y)|sE, EeC™\{0}, (2.39
whereC=1(1+(1+]|P||,)elll). Thus, iterating2.30 and using(2.38 we obtain

+ C * 4
e -1=rg| [ atwe e miec)

exp( jjdz<|Wi<z>|+m|P<z>|> |

where E e CT\{0} and|E|=m. This implies (2.35 for 7" (E,x) wheneverW* e L%(R). The
proof of (2.35 for #, (E,x) is obtained in a similar manner. To prov2.36 we obtain from

(2.30,

nF<E,x>=1+f:°dy G (Epx,y) [WE () 71 (E—k(E)P(Y)]
+ f;dy G (E;x,Y)[W=(y) Fi(E-K(E))P(y)]

XfymdzGf(E;y,z)[W+(z)Ii(E—k(E))P(z)]nf(E,z). (239

Using (2.36 and the inequality

m2

E—Kk(E)|< =,

|E|=m,
we obtain from(2.39,

, (2.40

. = . 1
77|_(E,X):1+f dy G (E;x,y)W=(y)+0O TEP
X

asE—o in CF. Substituting(2.31) into (2.40 and integrating by parts we obta{@.36). The
proof of (2.37) is analogous. O

lll. SCATTERING COEFFICIENTS

In this section we introduce various scattering coefficients as well as the scattering matrix for
(1.2) and (1.6) and study their symmetry, asymptotic and unitarity and contractivity properties.

A. Wronskian relations and symmetry properties

Let[f;g]=fg’ —f’g denote the Wronskian. Then froft.3) and(1.4) asx— *o we get

[f; (E,x);f, (E,x)]=—2iEa; (E)=—2iEa, (E), (3.1
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where(3.1) holds forEe C™. Consequentlya; (E)=a; (E), which we now denote bg*(E).
From (1.8) and(1.9) we now easily obtain

a(—E)=a4E), EeC"; (3.2

bis(—E)=Dbis(E), bs(—E)=Dbs(E), EeR, (3.3

wheres=1,2. Using(1.3), (1.4), and(2.16 we easily obtain

a*(—E)=a*(E), EeC'; (3.9
bi’(—E)=bj"(E), b (—E)=bj(E), EeR. (3.5

Next, if one assumes that™(E)#0 and defines the transmission coefficients Hy(E)
=a“(E) 1, the reflection coefficients from the left y" (E)=b,"(E)/a*(E), and the reflection
coefficients from the right byR*(E)=b,"(E)/a*(E), then, if P,QeL*(R) [P,QeL(R), re-
spectivelyl, the functionEa™(E)=E/T*(E) is analytic inC* and continuous ir:*\{0} [C*,
respectively and the functionsEb;"(E)=EL*(E)/T*(E) and Eb, (E)=ER*(E)/T*(E) are
continuous iNR\{0} [R, respectively. In terms of the reflection and transmission coefficients we
define the scattering matrix by
T*(E) R7(E)

SE= | 16

. (3.6

_ LetEeR\[-m,m]. Thenk(—E)=—k(E) is real. Thusf;"(E,x), f; (E,x), f;"(—E,x) and
f(—E,x) all satisfy(1.2) and hence their Wronskians are independent ¢Jsing(1.3) and(1.4)
e ot [ (Ex);f7(—E,x)]=—2iE=—2iE[a] (E)a; (—E)— b (E)b] (—E)],

[f; (E,x);f, (—E,x)]=—2iEb,; (—E)=2iEb; (E),
[f7 (Ex);f (—E,x)]=—2iEb; (E)=2iEb] (-E),
[f7(Ex):f (—Ex)]=2iE[a; (E)a, (—E)—b; (E)b; (—E)]=2iE,
where the behavior as— + o is given first and then the behavioras> — . As a result, we get
S*(E) " '=S"(—E). (3.7
From (1.3), (1.4), and(3.6) we obtain

fi"(—E.x)

(E,X)
—f7(—EX) -

SEx | (3.9

S
_S (E) —f
Let Ee(—m,m). Then k(—E)=Kk(E) is positive imaginary. Thus; (E,x), f, (E,x),
f(—E,x) and f/(—E,x) all satisfy (1.2) and hence their Wronskians are independenk.of
Using (1.3 and(1.4) we get
[f7(Ex); i (~Ex)]=—2iE=—2iE[a (E)aj (~E)—b{ (E)bj (—E)],
[fi°(Ex); 7 (~ Ex)]=—2iEb; (- E)=2iEb;" (E),
[f (E,x);f"(—E,x)]=—2iEb; (E)=2iEb; (—E),

[f (Ex);f7 (—Ex)]=2iE[a, (E)a; (—E)—b, (E)b, (—E)]=2iE,
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where the behavior as— + o is given first and then the behavioras> —». As a result, we get
ST (E) " '=S"(—E). (3.9
From (1.3), (1.4), and(3.6) we obtain

fr (—Ex)

f7(Ex)
—f5(—E,x) f

=SBtz (Ex)

. (3.10

WhenE € {—m,m}, the = equationg1.2) are identical and the boundary conditidis3) do
not distinguish between the versions of(1.2). It then follows that

fa(mx)=f"(mx)=f (mx), fia(—=mx)=f"(=mx)="f (-mx),
fra(mx)=f (mx)=f (mx), f(=mx)=f (=mx)=f (-m,x),
which implies
aj(m=a’(m=a (m), a(-my=a’(-my=a (-m),
biy(m)=b;"(m)=by (M), bjy(=m)=b/"(=m)=b; (-m),
bry(m)=b;(m)=b, (M), b (—m)=b/(—m)=b, (—m).
Hence_,S*(m)=S‘(m) and S*(—m)=S"(—m) are both unitary matrices, providea(m)
—a,(—m)#0. The behavior 0b,(E), by»(E), andb,,(E) asE— =m will be given by(3.20.

Finally, for Ee R\{—m,m} and under the assumption that (E)+#0 for everyE<R, we
introduce the modified scattering matrix,

S(E)=M(E)[S"(E)®S (E)IM(E) " *, (3.11
where
ik(Ey 0 ik(E) O
- 1 0 ik(E) 0 ik(E) |
M(E):Zik(E) 1 0 -1 o |
0 1 0 -1
1 0 ik(E) 0
N 0 ik(E)
ME)"=14 0 —ik(E) 0
0 1 0 —ik(E)
Using that

Ti(E) Ry(E) —k(E)*To(E) —K(E)’Ry(E)
Li(E) Ti(E) —K(E)’Lo(E) —k(E)?*To(E)
To(E) Ry (E) T.(E) R.(E) ’
Lo(E)  Ta(E) L.(E) T.(E)

SE)= (3.12

we obtain from(3.8) and (3.10 the following Riemann—Hilbert problem valid for botae R\
[=m,m] andE e (—m,m):



J. Math. Phys., Vol. 42, No. 1, January 2001 Inverse scattering for a Schrodinger equation 169

fii(—E,x) fr1(E,X)
—fa(-EX) | =« —f1(E,X)
f(—Ex) | =SB foEX | (3.13
_frZ(_E!X) _f|2(E,X)

One easily proves th&(E) 1=5(—E), both forEe (—m,m) and forE e R\[ —m,m].

B. Various asymptotic properties

Theorem 3.1:Let P,Qe L*(R). Then

a*(E)e*P=1+0 %) E— in C*; (3.14
. 1 . 1
br(E)=O(E>, b,(E)=O(|E|>, E—+oo, (3.15

where p is defined by (2.19).
Proof: From (3.1) we obtain

2iEa*(E)e™P=[2IE=P(xX)] 7 (E.X) 5 (E,x)+ 77 ' (E,X) 7, (E,X)— 7 (E,x) 7, (E,X).

(3.16

Now (3.14) follows from (2.21), (2.22), and(3.16. Similarly, (3.15 follows with the help of
—2iEb, (E)=e 2EXTP=2([ = (E,X); 5 (— E,x)], (3.17)
and the analogous expression involving(E). O

Let us now consider the low energy asymptotics of the scattering coefficients. From Ref. 17
we get the following result, depending on whether we are in the generic or in the exceptional case.
We letf;"(0x) andf, (0x) stand for the zero energy Jost functions of the usual 1-D Siamger
equation with potentiaQ(x) ¥ mP(x) andy~ for the quantity given by2.14).

Using Theorem 2.2 of Ref. 17, witA(k) =k?+m?, ko=im, S={ke C":|[k—im|<m} and
P(ko)=i[0,m], we easily obtain the following result.

Proposition 3.2: Suppose,P e Li(R).

() In the generic case we have

2iE

T*(E)=— — _ +0(E), E—0 in C*,
®=" 70,7 0.1 7
(3.18
L*(E)=—1+0(1), R*(E)=—1+40(1), E—O0 in R.
(i) In the exceptional case we have
. 2,yi . ,yi2_1 . 1_,)/12
T (W—m, (0)—T+1, R (@—m- (3.19

Finally, we consider the behavior of the scattering coefficient&-as=m in cr.
Propositon 3.3: Let R L1(R) and Qe L3(R). Then the expressions

a'(E)—a (E) b (E)=b/ (E) b/(E)—b, (E)
k(E) ' k(E) ’ k(E) ’ (320
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have finite limits as E>+m, Ee C.
Proof: From (1.4), (2.9), (2.6), and(2.7) we have

“2iE | LIYEEY) moEy)

a(BE)| |1
a,(E)|~|0

1 fx my(E,y)]

(1L e (ma(Ey)],
%%ﬁﬁmdyﬁ(ay) mea(Ey) |

-mll(Eiy) .
_mIZ(Eiy) '

b (E)| 1 [~ Eym
{blz(E)}_ﬁdeyéEyw(EaW

brl(E) _ 1 fw —2iEy=— [mrl(an)}
[brz<E> =2 ) L WYETTEEY Mo ey
where the limits a€ — +m from C* exist. O

When 1T (E) and 17~ (E) have anecessarily commomonzero limit as€E— +m, the next
corollary is a restatement of Proposition 3.3.

Corollary 3.4: Let PeLj(R) and QeL3(R) and supposel/T*(E) and 1/T"(E) have a
nonzero limit as E-=m in C*. Then the expressions

T(E)-T(E) L'(E)-L(E) R (E)-R(E)
k(E) ' k(E) ' k(E) '

have finite limits. HengeT,(E)=[T"(E)— T (E)]/2ik(E) and the analogous quantities,fE)
and L,(E) are continuous in E R if T*(E) is continuous in ER.

Proposition 3.5: Assume PL1(R), Qe L3(R), and W* e L}(R), and let T"(E) and T (E)
be continuous in ER. Then the functions {(E), L,(E), k(E)2L,(E), R.(E), R,(E), and
K(E)?R,(E) belong to [?(R).

Proof: In view of Corollary 3.4 and the continuity af*(E) in E € R, it suffices to study the
asymptotic behavior of the above functionsks> =«. From (2.36 and (2.37 we have a

— + oo,

W™ (x)

Wi(x) )
Hz), ur (E,X)—— 2IE +0

2iE

7 (E,X)= +0

Using (3.17) we find
b (E —Ri(E)—O 1
(7T OlEr)
and similarly forL=(E)/T=(E). On the other hand, usin@.16 we get

[ .dzW(z) ( 1 )]
+— ,

+ —atp N
T*(E)=e*P{1 o E Bk

whence

1
[EP?)"
A similar asymptotic expression can be derived lfér(E). This expression implies that, (E),
L,(E), andk(E)?L,(E) belong toL?(R). O

R*(E)=0
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C. Unitarity and contractivity properties

Let Ee (—m,m). Then(1.2) is a pair of 1-D Schrdinger equations with real potentials and
hence the scattering matr&" (E) is unitary(cf. Refs. 15 and 16 As a result, the reflection and
transmission coefficient®=(E), L=(E), andT=(E) are continuous irE € (—m,m).

Let Ee R\[ —m,m]. Observe that if)(E,x) is a solution of the+ version of (1.2 and
¢(E,x) of the ¥ version of(1.2), then

d
axLY(EX)e(EX)]= 5 2iIk(E)P(X) $(E,X) ¢(E,X). (3.21)

Hence two expressions of the WronskianygE,x) and¢(E,x) can be found by examining their
value asx— o0 and integrating with respect ta Using (2.16), (3.4), (3.5, and(3.21) we get

[ (Ex);fi (—Ex)]

—2iEi2ik(E)Lwdy Py (E,y)|%

_ ) (322
—2iE[|ai(E)|2—|b|t(E)|2]12ik(E)J_wdy P(y)|f (E,y)|%,
2Eb (B)72k(E) | dy PO (E)T; (B
[ (Ex);if (mEx)]= o . (3.23
~2iEb; (B)=2k(E) | “dy P (E)T; (),
[f,(ExX);f (—EX)]
2iE12ik(E)JX dy P(y)|f=(E,y)|%;
_ - . (3.24
2iE[|f:1i(E)|2—|bri(E)|2]t2ik(E)fX dy P(y)|f; (E,y)[%.
Subtracting the two right-hand sides of each(®22—(3.24), we get
Lt B b ER= o [ ay Pyl FEY 329
- = K(E) (= + P
—br(E)=b (B)=%—F— f_wdy PY)TE(Ey)fr (Eyy), (3.26
—1+]a*(B)]*~ by (B)|*= 1% _dy Py)lfr(Ey)[*. (3.27

From (3.25 and(3.27) it is clear thata™(E)#0 when(FP(x))=0. In that case we define the
matrix

f:dyF’(y)lI‘F(E,y)l2 fldyP(y)ff(E,y)fF(E,y)
WHE)=F| B
| aypoirEntiEy [ ayrlEpE
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and, provideda™ (E) #0, derive the identity

k(E)

1 0
+ AVYES _ _ ot tat
£ [T (B)*W™(E) [0 1| 7S (B)'ST(B),

which is nonnegative selfadjoint {f+P(x))=0. Here 1 denotes the conjugate transpose. Simi-
larly, one proves that if+ P(x))<0 and the transmission coefficiefit (E) is well-defined, the
scattering matrixS™ (E) has a contractive inverse.

D. Discrete eigenvalues

The discrete eigenvalues of the pair of modified Sdimger equationg1.2) coincide with
those of the systertiL.6). They form a finite or countably infinite subset©f of eigenvalues of
finite algebraic multiplicity. The geometric multiplicity of the eigenvalues of either of the equa-
tions (1.2) is one, while that of(1.6) is at most two. They can only accumulate in a bounded
interval of the real line, but not at points of-(m,m). Accumulation asE— is impossible
because 0f3.14). Accumulation at points of-{ m,m) is impossible, because the scattering matrix
S*(E) is unitary if Ee (—m,m).

The discrete eigenvalues are symmetrically located with respect to the imaginary axis, where
the geometric and algebraic multiplicities of an eigenvaluggatoincide with those at-Ey. This
follows directly from(3.4)—(3.5). The net result is that the residuesi®f*(E) atE, and—E, are
complex conjugates.

For the problem(1.2) with m=0, the properties of the discrete spectrum have been discussed
in detail in Ref. 6. Many of these results also follow from spectral properties of certain operator
pencils(cf. Ref. 19. If m>0, most of those results are expected to go through, albeit in a slightly
different form.

IV. MARCHENKO EQUATIONS

In this section we derive the Marchenko integral equations leading to the solution of the
inverse scattering problem.

A. Fourier transformation properties

Let us apply the method of Ref. 13 to derive Marchenko integral equations to solve the
inverse scattering problem. We begin by deriving some integral representations fratie
formed Jost solutions.

Theorem 4.1: Assume R L1(R), QeL3(R), and W* e L}(R). Then the Jost solutions
f,s(E,x) and fis(E,s) (s=1,2) can be represented as follows:

f.1(E,x)=e "®*cosip— ¢(x))+ f_xwdt K, 1(x,t)e B, (4.2
frz(E,x):ﬁxmdtKrz(x,t)e*iEt, (4.2
f11(E,x)=e'F*cosHZ(x)) + f:dt K1(x,t)e'Et 4.3
f|2(E,x)=£cdtK|2(x,t)eiEt, (4.4

where K (x,t) and Kig(x,t) (s=1,2) are independent of E and belong t3(I?) as functions of
t when xe R is fixed
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Proof: Using (2.17, (2.18, (2.36, and (2.37 it follows that f;(E,x)=f(E,X)
—e'®¥coshz(x)) and T,1(E,x)=f1(E,x)—e "®¥coshp—¢{(x)), as well as T ,(E,x)
=f,,(E,x) andf,,(E,x)=f,,(E,x) belong toL?(R) as functions ofE for fixed xe R. Further,
these functions multiplied bfog(E|+2))*? belong toL?(R). So Plancherel’s theorefef. Ref.
20, Theorems 48 and B&mplies the existence of the integrals,

Lim. 1 a ~ -
Ks(X,t) = —f dE f.¢(E,x)e'E, s=1,2,
rs . 27 ). rs
Lim 9 a ~ )
Kis(x,t) = —f dE fi(E,x)e B, s=12.
a— +owo 277 —a

Itis clear that,4(x,t) andKs(x,t) (s=1,2) belong td_%(R) as functions of for everyx e R (cf.
Ref. 20, Theorems 48 and 63

Due to(1.7) and Theorem 2.1, the functioriss(E,x) and fs(E,x) (s=1,2) are analytic in
E<C*. Moreover, there exist€>0 (depending orxe R) such that fors=1,2,

|er(EyX)|$CeX|mE, |f|s(ny)|$Ce*X|mE,

for all xe R. From(2.37) we obtain
J dt[f,o(t+i ImE,x)|?>=0(e 2*ME),

Similar estimates hold foK,,(E,x) and for K|;(E,x) (s=1,2). Hence we may apply Titch-
marsh’s theorentcf. Ref. 20, Theorem 96and obtain

Kr(x,1) =K 5(x,t)=0, t>Xx,
Kii(x, ) =Kj(x,t) =0, t<x.

This proves the representatio@s1)—(4.4). O
Using (2.18), (2.19, and(2.37), we obtain
1
[E[?

1
[E[?)”

ie—iEx

T (Ex)= +0

X X
e””“x)f sz\F(z)+ep’5(x)J’ dzW (2)

ie—iEX

TAETIY o

X X
e—p+§(x)j dz\Aﬁ(z)+ep’§(x)f dzW (2)

wherey is an arbitrary positive number. Its Fourier transform is of the form

e7p+§(x) X epfg(x) X
) deW(Z)"‘ 1 fszV’(z)

Krl(X!t) =

e XV g(x—1)+ M, 4(x,1),

where 6(z) is the Heaviside function given by

0, for z<O,
1, for z>0,

0(2):[
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M;1(x,t) is continuous inteR for fixed xe R and there exists the partial derivative
(M, (x,t)/at)e L2(R) (cf. Ref. 20, the beginning of Sec. 6.13, before Theorem).1P&nce,
K,1(X,t) has a jump discontinuity at=t. Taking into account the identiti{,;(x,x+0)=0, we
obtain

Krl(x,x—O)z%f(ep”(")J’X dz V\F(z)+ep*f(x)£( dz V\f(z)). 4.5

In the same way we obtain

Kr2(x,x=0)=sinh(p—{(x)). (4.6

Using (4.5 and (4.6) we now computeéQ(x) and P(x) from K,;(x,x—0) andK,,(x,x—0). In
fact, we obtain

d
P(x)=2d—xlog(K,Z(x,x—O)+(Krz(x,x—0)2+ 1)), (4.7
. d K,1(Xx,x—0) P(X) 1 (x P(x)?
Q(x)—2d—x coshi [ dz A2) -2 tan}‘(zj_mdz P(z)| |+ 7 (4.8
In the same way we derive
Ki2(X,x+0)=sinh({(X)),
d
P(x)=—2&Iog(K|2(x,x—0)+(K|2(x,x—0)2+ 1)¥?), 4.9
o d [ Kp(x,x+0) P(x) 1 (= P(x)?
Q(X)__Zd_x(cosh%ffdz o) -2 tan}‘(ifx dzP(z2) ||+ 7 (4.10

B. Marchenko equations without bound states

Let us assume that" (E) andT ™ (E) are both continuous i € R. Before deriving the two
pairs of Marchenko integral equations, we introduce the two sets of integral kernels as follows:

1 (= . = dE _
F|1(x)=zﬁxdE L (E)e'®*= fﬁxE[LJr(E)JrL’(E)]e'EX, (4.12

1 (= . » dELT(E)-L (E) .
F,Z(x)zﬂﬁde L,(E)e®*= f_mﬂ %9'5‘, (4.12

1 (= _
Fis)=—5— fﬁwdE K(E)?L,(E)e'™

([ 9E + - iEx
Z'Lwﬂk(E)[L (E)-L™(E)]e’®, (4.13

as well as

1 (= . = dE .
Frl(x)zﬁﬁwdE R(E)e'Ex= fﬁwE[RWE)ﬂLR’(E)]e'EX, (4.14
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1 (= . » dER*(E)—R (E) .
Frz(X): EJ_wdE Rz(E)eIEX: j_mm %eIEX' (415)

1 (= A
Fra)=—5— J:wdE k(E)2R,(E)eE

[T dE + - IEX
=|fixﬂk(5)[R (E)—R (E)]eEx. (4.16

Then the integral$4.11)—(4.13 and (4.14—(4.16) exist as a result of Proposition 3.5 and the
continuity of T*(E) and T~ (E) in E€R.
Next, we introduce the unknown functioBsg(x,y) andBs(Xx,y) (xe R, y>0, s=1,2) by

Krs(x,x—y) K|S(X!X+y)

costp—2x)" Y= Cosz(x)) .19

Bis(X,y)=

and write(4.1)—(4.4) in the form

fs(E,x)=e"'"BXcosi(p— (X)) :

55,1"’_ f dy éEyBrs(Xay)
0

fis(E,x) =€'EXcosi({(x))| 81+ de e5YBis(x,y)
0

wheres=1,2.
Starting from the two pairs of equatiofsf. (3.13],

fra(—E,X)+Ly(E)f,1(E,X) —K(E)?Lo(E)f,2(E,X)
=T1(E)fi1(E,x) —K(E)?T,(E)f|o(E,x), (4.18
fro( —E,X)+Lo(E)f 1(E,X)+L(E)f,o(E,X)
=T,(E)f12(E,X)+ T1(E)f)2(E,X), (4.19
and
f12(—E,X) + Ry(E) f 1(E,X) —K(E)?Ry(E) f|5( E,X)
=T1(E)f1(E,X) —K(E)?To(E)f2(E,X), (4.20
f12(— E,X) + Ro(E) f11(E,X) + Ry(E) f15(E,X)
=T,(E)f,1(E,x) + T1(E) f,2(E,X), (4.2D)
and Fourier transforming the contributions to these equations that are anal§ficaind vanish at

infinity while taking into account4.11)—(4.17), we obtain the two pairs of coupled Marchenko
equations,

Bri(x,y)+ J:dZ[F|1(y+ 2= 2x)By1(x,2) + Fi3(y + 2= 2x)B2(x,2) ]

=—Fu(y—2x), 4.22
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Bra(x,y)+ J:dZ[F|z(y+ Z—2x)By1(x,2) + Fi1(y +2—2X)B2(x,2) ]

=—Fialy—2x), 4.23

and
Bia(xy)+ fo AZ[F 1 (y+ 2+ 20Ba(%,2) + Fraly + 2+ 20Bia(x,2)]

= —F(y+2x), (4.24

Bi2(x,y) + jode[Fr2(y+ z+2x)B1(X,2) + Fr1(y +2+2x)By5(x,2) ]

=~ Fra(y+2x). (4.29

In deriving (4.22—(4.295, we have assumed the absence of the discrete spectrum of the two
equations(1.2) and hence the analyticity af,(E) andT,(E) in C*.

C. Marchenko equations with bound states

When one of the two equatiori$.2) has a discrete spectrum, the derivation of the Marchenko
equations(4.22—(4.25 should be madified, since the right-hand sidegbf.8—(4.21) may no
longer vanish. To simplify the discussion, we make the following assumptions.

(1) T"(E) andT~(E) are continuous irE € R.

(2) The number of poles of *(E) andT~ (E) in C* is finite [denote the poles of either &f (E)
in C* by E;, wherej=1,... NV].

(3) The poles ofT"(E) andT (E) in C" are simple; we WI’itEitJ-t for the residue off *(E) at
E=E; (j=1.....NV). We puttj;=[t;"+t; /2 andt;,=[t;" —t; ]/2ik(E;).

(4) We remark thatji, tj1, tj2, andik(E;) are real ifg; is imaginary. Quantitie‘.?ji, tj1, tjo,
andik(E;) corresponding to eigenvalues symmetrically located with respect to the imaginary
axis are complex conjugates. These properties are immediate from the observations made in
Sec. llID.

(5) Using the terminology of Ref. 16 and recalling that the eigenvalues of eithét.2f have
geometric multiplicity one, we first introduce the norming constants,

fi"(E; ,x .
f=% j=1,...N7 .
Then one easily verifies that

f11(E; %)= Cj1fr1(E; %) —K*Cjaf o Ej %),
f12(Ej %)= Cjof (1(Ej ,X) + Cja fr2(Ej %),
wherek;=k(E;) and

+ - + -

Cix 2 CizT 2ik;

Calculating the residues of the expressions on the right-hand sides1d—(4.21) at E
=E; in C*, we obtain
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[tj1Cj1—Kt;2C21f 1(Ej . X) — KT tj1Cj2+1j5C 11 2( Ej %), (4.26
[tj2Cj1+tj1Cj2]fr1(Ej %) +[ —Kitj2Cjo+1;:Cj11fra( Ej X), (4.27
[t;1Dj1—Kt;2D o1 1(Ej ,X) — KT tj1Djo+ 5D 1], o(Ej %), (4.289
[tj2Dj1+;1D2]fr1(Ej ) + [ —KFtjoD o+ 11041 o(E; %), (4.29

multiplied by the imaginary unit. Here
fr1(Ej,x)=Djafi1(E; ,X)—kaDjzﬁz(Ej X)),
fr2(Ej,X)=Dj2f11(Ej ,X) + Dj1f12(Ej %),
where we note that
{Djl _kaDi2}:[le —kajz}‘l
Di2 Dp Co Cp |

We remark thaC;", Cj;, Cj,, Dj;, Dj, andik; are real ifE; is imaginary. Quantitie;” , Cjy,

Cj2, Dj1, Dj,, andik; corresponding to eigenvalues symmetrically located with respect to the
imaginary axis are complex conjugates. These properties are immediaté2rbén

We now recall that in order to compute the left-hand side minus the right-hand side28f
and(4.23), we have to single out the contributions(ta18 and(4.19 that are analytic i~ and
vanish at infinity and apply the operation /2~ _dE €50~ [cosHp— ¢(x))] * to them. Ap-
plying the same procedure to the right-hand side@df8 and(4.19 and using4.17), (4.26), and
(4.27), we obtain

N )
_jgl eiEj(y—ZX)(A|jl+ fo dz éEjZ[A”lBrl(X,Z)—kj2A|szr2(X,Z)]) ,

N

—le eiEJ(y_ZX)(A|j2+fO dz éEJZ[AHZB,l(x,z)—kj2A|le,2(x,z)]),

where
Aij1=t1Cj1—KtjCia,  Ajja=11Cjo+1;,Cjy .
Introducing the modified Marchenko kernel functions,

N
Fis(¥)=Fis(x)+ >, AjjseF%, s=1.23,
=1

whereA;;= —ijA“-z, we arrive at the coupled Marchenko integral equations,

Bri(x,y)+ f:dz[ﬁu(w 2= 2%)B,1(x,2) + Fia(y +2—2X)B,2(x,2)]

—Fuly-2x) 430
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Bra(x,y)+ J:dz[?.z(w 2= 2%)B,1(%,2) + Fi2(y +2—2X)B;2(x,2)]

=—Fialy=2%). (4.39

In an analogous way we obtain the coupled Marchenko integral equations
B|1(x,y)+fomdz[ﬁrl(y+z+2x)B,1(x,z)+ﬁ,3(y+z+2x)B|2(x,z)]
=—F1(y+2x), (4.32
B|2(x,y)+fowdz[lérz(waz+2x)B|1(x,z)+l~:,1(y+z+2x)B|2(x,z)]

=—Fraly+2x), (4.33

where

N
Frs(x)= Frs(x)+z A €5%, s=1,2,3,

Ar1=t;1Dj1—Kt;Djn,  Arjp=t51D )+ 15D,

andAj3= —ijArjz. Using the symmetry statements made before in this subsection, one easily
proves thaf (x) andF,s(x) (s=1,2,3) are real functions.

WhenT*(E) and T~ (E) both have a finite number of poles and some of them are multiple
poles(but otherwise the first assumption is fulfilled4.30—-(4.33 can be derived using a gener-
alization of the notion of norming constant given in Ref. 7, but with more complicated auxiliary
kernel functionsk5(y) andF,s(y) (s=1,2,3).

We now state the main result. The first part is immediate f(du@)—(4.8) and (4.17). The
second part follows from the secoiid.17) and expressions involvings(x,t) andBs(X,y) (s
=1,2) analogous t§4.7)—(4.9).

Theorem 4.2: Suppose R Li(R), Qe L3(R), and W* e L}(R), and let conditions (1}(3)
stated at the beginning of Sec. IV C be fulfilled. Then,i{8-) (s=1,2) are the solutions of the
Marchenko equations (4.30) and (4.31) angh®&,0") e (—1,1), the potentials @x) and P(x)
are given by

1+B,5(x,0%)
PO~ 4x1°91-8,,x,07) 439
_,4 b PO L[ P(x)?
Q(x)—2dX r1(x0)—Ttan}-(zfmdzp(z) + 7 (4.35

Similarly, if Bs(X,-) (s=1,2) are the solutions of the Marchenko equations (4.32) and (4.33) and
B,»(x,07) e (—1,1), then the potentials (x) and P(x) are given by

1—-B,(x,0M)

d
P(X)_ gm (4.36

(X)2

(4.3

d
Q=2 Bu(x0") - o ta nr( fdzP(
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V. SOLVABILITY OF THE MARCHENKO EQUATIONS

In this section we establish the compactness of the Marchenko integral operators and relate the
unique solvability of thépairs o) Marchenko integral equations to the canonical factorizability of
a matrix function.

Theorem 5.1: Suppose R Li(R), Qe L3(R), and W* e L}(R), and let conditions (1(3)
stated at the beginning of Sec. IV C be fulfilled. Then the integral operators arising from the
Marchenko integral equations (4.39).33) are compact ond(R ™).

Proof: All of these integral operators have the form

(Kgxw:J:dzHy+ngux y>0,

where
F(x)= > Jm dE®(E)eF
277 — '

for some functiond(E) that is continuous irEe R and vanishes aE— *o. Such integral
operators are Hankel operators with continuous symbol and as such compadtin(cf. Refs.
21 and 22. O

In order to derive sufficient conditions for the unique solvability of the Marchenko equations
(4.30—(4.31) or the Marchenko equationig.32—(4.33, we define the quantities

ﬁas(E)=f dz e 'EF ((2), I:s(E)=f dz e B ((2),
wheres=1,2,3. If neither of(1.2) has any eigenvalues, we have
Ri(E)=Ry(E), Ry(E)=Ry(E), R3(E)=—K(E)?Ry(E),

Lo(E)=L1(E), La(E)=Ly(E), Ls(E)=—K(E)?Ly(E).

Introducing the functions

Bé(E,X)=if0ﬁdy Bis(x,y)€e'®, BE(E,X)=rf0de Bi(X,y)€'EY,

wheres=1,2, by Fourier transformation we obtain frdgh30—(4.31) the Riemann—Hilbert prob-
lem,

I 0} X" (E,X) I F(EX)][ X (E,x) _[Y(—E,x) 51
F—Ex) X (-Ex|Tlo 1 |[x*(-Ex]7| vEX || &Y
wherel denotes the & 2 identity matrix and
+ _ B;:l(E,X) _ _ A—2iEx E:I.(E)
X (E'X)_[BfZ(E,X) , Y(Exx)=-—e I:2(E) ,
L.(E) L4E
F(Ex)— e 2Ex Al( ) A3( ) .
L2(E)  Li(E)

In the same way we define
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Ry(E) Rs(E)
R,(E) Ry(E)

Fo(E %) =e%®

In analogy with(5.1), we derive the Riemann—Hilbert problem,

I 0
F(—ExXx) |

I F(E,X)
0 I

X*(E,x)
—X"(—E,x)

X~ (E,X)
—X*(—E,x)

[Y(-Ex)
| —Y(E,x)

from the system of integral equations obtained fr@gh80 and(4.31) by replacing the kernels,q
with —Fs.

Next, by a(right) canonical factorizatiorof a matrix functionW(E) defined forEe R we
mean a factorization of the form

W(E)=W (E)W*(E), (5.2
where bothw=(E) andW=(E) ! are continuous irfE e C*, are analytic inE e C*, and have a
limit as E— o in C*. Replacing(5.2) with W(E)=W"(E)W (E), we get the definition of a left
canonical factorization.

The following theorem easily follows using the methods employed in Refs. 23 and 24. Such
methods were applied to inverse scattering before in Ref. 7.

Theorem 5.2: Suppose R LI(R), Qe Li(R) and W* e Li(R), and let conditions (1(3)
stated at the beginning of Sec. IV C be fulfilled. Then, for fixe® xthe system of Marchenko
integral equations (4.30) and (4.31) and the system of integral equations obtained from them by
replacing the kernels g with —F ¢ both have a unique solution if and only if tde< 4 matrix
function

[I —F(E,X)F(—E,x) —F/(E,Xx)
(5.3

Fi(—E,X) |

has a (right) canonical factorization. Similarly, for fixedexXt, the system of Marchenko integral
equations (4.32) and (4.33) and the system of integral equations obtained from them by replacing

the kernels F, with —F,¢ both have a unique solution if and only if téex 4 matrix function
l_Fr(EyX)Fr(_E:X) _Fr(ElX)
F.(—E,x) I

(5.9

has a (right) canonical factorization

In Ref. 7 the Marchenko equations are simple enough to allow for a representation of the 4
X 4 matrix functions in(5.3) and(5.4) as the direct sum of two’22 matrix functionsone being
the adjoint of the othemultiplied on either side by constant nonsingular matrices. As a result, in
Ref. 7 the analog of the present Theorem 5.2 involves the equivalence of the simultaneous unique
solvability of two pairs of Marchenko equations to the existence of both a left and a right canoni-
cal factorization of a X2 matrix function. No such simplification has been found for the present
problem.

We conclude this article by giving a sufficient condition for the canonical factorizability of the
matrix function in(5.3) and hence of the unique solvability of the solution of the Marchenko
equationg4.30—(4.31).

Corollary 5.3: Suppose BLi(R), QeL3(R) and W= e L1(R), and let conditions (1}(3)
stated at the beginning of Sec. IV C be fulfilled. Then, for fixed xthe system of Marchenko
integral equations (4.30) and (4.31) are uniquely solvable if

sup||F(E,x)||<1. (5.5
EeR
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Analogously, for fixed % R, the system of Marchenko integral equations (4.32) and (4.33) are
uniquely solvable if

sup||F(E,x)||<1. (5.6)
EeR

In (5.5) and (5.6) the norm is defined as the largest singular value of the matrix
Proof: This corollary is immediate from Theorem 5.2 by observing #f¥5) implies that
Fi/(E,x) has a canonical factorizatiqef. Ref. 25, Sec. Il A. O
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Static vortices close together are studied for two different models in two-
dimensional Euclidean space. In a simple model for one complex field, an expan-
sion in the parameters describing the relative position of two vortices can be given
in terms of trigonometric and exponential functions. The results are then compared
to those of the Ginzburg—Landau theory of a superconductor in a magnetic field at
the point between type-I and type-Il superconductivity. For the angular dependence
a similar pattern emerges in both models. The differences for the radial functions
are studied up to third order. @001 American Institute of Physics.
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[. INTRODUCTION

Ever since t'Hooft and Polyako% found a monopole solution in the $2) Yang—Mills—

Higgs theory, solitons in field theories have been studied extensively. Our understanding of mono-
pole solutions has been greatly enhanced by an existence proof for static solutions by @adbes

the construction of monopole solutions started by Wefthis process was not matched by quite

the same progress in our understanding of the Abrikosov solutions of the Ginzburg—Landau
theory, although one might have expected that the Abelian Higgs theory- ind2mensions is
actually simpler than the SB) Yang—Mills—Higgs theory in 31 dimensions. Again an existence
proof was given by TaubesHowever, only superimposed vortices can be described explicitly and
no explicit construction of separated vortices is known. In this article, we want to give the solution
for two vortices close together in terms of an expansion in the parameters which describe the
relative location.

In Secs. Il and Ill, we study a model for one complex field. Here the calculations are simpler
than in the Ginzburg—Landau theory which is our second model. The first model has, however,
some peculiaunphysical features. Assuming the most symmetric form in terms of angular
dependence, only two smooth vortices can be superimposed, and when “pulled apart,” they
develop a singularity at third order. In the Ginzburg—Landau model this does not happen. In fact,
delicate cancellations take place to make the expansion smooth, at least up to third order. In this
model the radial functions are given as solutions of certain linear ordinary differential equations.
This is discussed in Sec. IV.

II. VORTEX SOLUTIONS AND ZERO MODES IN A SIMPLE MODEL

Our first model is a mod&f for a pair of real fieldsp?(x), a,b=1,2, or equivalently, for a
complex fieldp= ¢, +1¢,. The Lagrangian density of the model reads

L= (i3, pad p+ (1= p2)? $]?, 2.1)

0022-2488/2001/42(1)/182/10/$18.00 182 © 2001 American Institute of Physics
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wherea,b=1,2 labels the components of the Higgs field &rjd=1,2 are the space indices. The
square brackets mean antisymmetrization,

I b5 B°= (9,6 (9;6°) — (9,6 (3 °). (2.2

We are working in two-dimensional Euclidean space, i.e., the space indices can be raised and
lowered without any change in the formulas. The indices which label the components of the Higgs
field can also be raised and lowered without any change. In terms of the complexfighe
Euler—Lagrange equation reads

S J
ﬁi¢*<?;(<9['¢r?’]¢*):(l—|¢>I2)|¢|@(1—|¢|2)|¢|- (2.3
Any solution of the equation,
(9 a
2det( ¢i)=t<1—|¢|2>|¢|, (2.4
ox

solves the equation of motidi2.3). Note that Eq(2.4) is a first-order equation whereas E}.3)
is of second order. So we would expect tliaH) is somewhat easier to solve théa3). For
different types of models, this reduction of order was first introduced by Bogomblflyat is
why we call Eq.(2.4) the Bogomolnyi equation here. Any solution @.4) also attains the lower
bound in the following inequality:

A= £ ax="Clol @5
= | L dx=ElQl :

where

15 -
Q:ﬂfRz'fu(l—|¢|2)I¢I(a'¢)(al¢*)d2x 2.6

is the winding number. Finally, all finite-action solutions actually solve the Bogomolnyi equation,
so we do not miss out on any by concentrating on the first-order equation.
We now seek to attain a smooth finite-action solution of ). For

p=1f(r)e"?, 2.7
Eq. (2.4) reduces to

nf(r)f’(r)

1 2
=5 (1=, 2.9

Sincef—0 asr—0 [otherwiseg in (2.7) is not defined at the originwe have
r2
f=tanh—. (2.9
The solutiong in (2.7) with f(r) given by (2.9) is defined in the whole oR? and is clearly
a C” function inR?\{0}. Since

2
r
f~1—2expﬁ asr—o, (2.10
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¢ has the right asymptotic behavior for a solution with winding nuntbét/e still have to ensure
that ¢ is C” at the origin. There we use the Taylor expansior, of

>

K=1 (2k)!

2k 2k _ 2\ 2k-1 2 2\3
L”B%(r) ! 1(r) . (2.11

4n/  4n 3l4n

whereB, is thekth Bernoulli number. We see that far=2 and only forn=2, ¢ is a polynomial
in x'. In this model, we have thesomewhat peculiasituation that within the most natural ansatz
(2.7), smooth finite action solutions exist only for=2, i.e., we only have a solution of the form
(2.7) for two vortices.

We have found the solution for two vortices sitting on top of each other, which we now denote
by ¢. To extend our study to two vortices slightly apart we considler$+ y, wherey is very
small, and we solve the Bogomolyni equation, linearized irEquation(2.4) becomes

2

2 \oy !
f’coscos29+ —fsingdsin26 | — +
r NG

dy
axt

2
f’singdsin26+ chosﬂcosZB)

2

2 d 2
— ( f’sinfdcos2— chos93in20)ﬁ—yl — ( f’cosfsin260— Ffsin&cosZH
X

1

IX?

1 .
=§(1—3f2)(y1c05219+ y?sin26). (2.12

We find a two-parameter family of zero modes,

2
sinhrg

v(r)=[a+B+I1(a—pB)]h(r) with h(r)=ﬁr. (2.13
cosﬁg

These zero modes af&” functions which vanish exponentially at infinity. By a rotation, one of
the parameters could be removed and the vortices could be positioned, say,»xeaxteeSince

this does not simplify the calculations significantly, we will retain both parameters. Retaining the
two parameters would also be necessary for a study of vortex scattering in the slow-motion
approximation. This study is not done in this work.

Ill. THE QUADRATIC AND CUBIC TERMS

We now considerp= ¢+ y+ 8, and equate the second-order terms in the Bogomolyni Eq.
(2.4). This leads to the equation,

2 f’ 20(952+2f'20(952 f"20a51+2f 20(951 =(a?+ B?)fh? ! 3
; cos 70 sin g sin 70 cos " =(a"+B9) >

1
_Zfp2
2fh

1
3+ 7z [ @?(c0s20+ sin26)?+ 2aB(co$2 6— sirf20) + B%(cos20—sin26)?]
+(1—3f?)( 5 cos20+ &%sin26), (3.1

with f(r) given in(2.9) andh(r) given in(2.13.
With § of the form

5= a’F(r,0)+2aBG(r,0)+ B2H(r,0), (3.2
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we obtain the following equation fdf(r,0):

2 IF? ~ gF? - gF? IFt
—| f'cos20 — + 2fsin20 — — f'sin20 — + 2fcos20 —
r J0 ar ar

a0
2 1 ? 1 P 2 2 2ai
=h F—Sf -5 3f+? (cos29+ sin26)?+ (1—3f2)(Flcos29+ F2sin26).
(3.3
To solve this equation we seek a solution of the form
F=f(r)exp??—if,(r)exp '?%. (3.9

The ansatA3.4) leads to two decoupled equations fgrand f,. In terms of the variabl€
=r?/8, they read

dfl+1<3f2 1 df)f —h2(1 9f2) (3.5
& f dg) 't of2 ' '
df Yapey dff— hZ1 3f2 3.6

The general solution to E@3.5) is

1 (SSinrf Sinh§+C1). 3.7

f = —
Y cosRe | 2cosfig  costE

The functionf, is a C” function for 0< <. For £—0, f;—C; holds. This implies thaC;
=0; otherwiseF in (3.4) is not defined at the origin. Therefork, reads

. 3sinké sinh¢

= - . (3.8
Y 2cosf¢  coshé
The expansion of; near the origin is of the form
f1=2 ak§k=2 ay B} (3.9
k=1 k=1

Hence, the first term if3.4) is a C* function of x! and x? at the origin. We also see théi
vanishes exponentially at infinity. So its contribution#odoes not change the winding number
(2.6) which is a multiple of the action.

A similar calculation yields a one-parameter family of solutions to @Bcf), namely

sinké  3sinkP¢ sintfé&

f= - . .
> 2cosh¢  2coshi¢ *Ca cost ¢ (319

In contrast tof 4, all the solutionsf, are acceptable. In fact, for al,, f, is of the form

~ “ 2\ k
fo= 2 byé= 2, bk(%) (3.10
k=1 k=1
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near the origin, and therefore the second terr(8id) is in C*(R?). The winding number and the
action are also not altered becaudsedecays exponentially at infinity.

The functionsG andH in (3.2) can be found in the same way. If we put all results together,
we obtain the second-order terms,

5= (a®+ B 1(r)exp?’+1(a—18)%F,(r)exp %%, (3.12

wheref; andf, are given by(3.8) and(3.10, respectively.
To find the cubic terms, we consideér= ¢+ y+ 8+ €, with y given in(2.13 and s given by
(3.12. We setB=0 and concentrate on

e=a°l(r,0). (3.13

For the Bogomolnyi equation to holt,must satisfy

2 2 1 1

2 J 9 R,
T f cos%%+2fsm205—f S|n2¢9%+2fcos2t9a—r

+h'(2f,cos20+ 2f,sin20)+h’'(2f,sin260+ 2f,cos29)

= —3f2(11cos20+1%sin26) — 3hf(f,— f,)(cos20+ sin26)
—3fh(cos20+sin26)(2f,— f,— 2f,c0s29sin26) — 3(cos20+ sin26)h®
h
+11cos29+ 12sin26+ E[fl(COSZH-I— sin26) — f,(cos20+ sin26) ]
h3 3

h
+ 5 (cos2p+ sin26)3— f—2(00520+ sin26)

h h
— ?(00320+ sin26)(f,—2f,co0s24sin20) + F(COSZB-F sin26)2. (3.19

To solve Eq.(3.14) we seek a solution of the form

It=g;(&) +ga(€)(cosdo—sin4d),

(3.15
12=g,(&)— g &)(cosdd+sin4s).
This implies thaty; andg, must satisfy the equations
dg, [, L) _ faitfodh 9 hfy P o .
ae " 71997 T ag 1+ 5ht; PYTRPCRT (3.19
dg, [1 2 df hf, 3hf, h3 hd
R I R 317
The general solution to E¢3.17) is
sinké  5sinkP¢ sinkfPé  3sint¢ sink*¢
92: — —‘,— 2 - + 3 . (3.1&
4cosié  4cosHé 2cosi¢  2coshi¢ cosh¢

All solutions (3.18 decay exponentially at infinity. Far—0, however,
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1
gz(r)zﬁr2+ e (3.19

Hence,l in (3.15 is not aC” function onR?. Our expansion gets singular at third order for the
ansatz(3.195. In the next section we will discuss a realistic model in which a similar pattern
emerges but no singularities occur.

IV. ABRIKOSOV VORTICES

The Ginzburg—Landau theory of a superconductor in a magnetic field in directgogiven
by the Lagrangian density

1 ij 1 i * A 2 2
L£=7FyFi+5(Di¢)(D'¢)* + o (|4l*~1)%, (4.1
where ¢ is the complex Higgs field, anB;¢=d,¢—1A;¢ andF;;=d;A;— d;A; in terms of the
gauge potentialg\;, i=1,2. The Euler—Lagrange equations are
i A 2 ij : j * *nj
DiD'¢=5d(1-|4["), aFI=5[4(DI¢)*~¢*Di¢]. 4.2

In the special case=1, it can be showhthat all finite action solutions of E¢4.2) satisfy the
first-order Bogmolnyi equatiorfs,

Fi,=3(1-[¢[>, Dip=—iD,¢. 4.3
It has also been showrthat a -parameter family of solution of4.3) exists with winding

number

1 2
n= ELZFIZ d“x. (4.9

This family describes vortices sitting ain position in space.
Even forn vortices sitting on top of each other, the solution is not known explicitly in terms
of elementary functions. It is knowt,however, that this solution is of the form

(i):f(r)e'”a, Ai=—&(2r)sijxj, (45)
r
wheref anda satisfy
rf’—n(l1—a)f=(2n/r)a’+f>—1=0 (4.6)
and
f(0)=a(0)=0, Ilimf(r)=Ilima(r)=1. (4.7

r—om r—o

In the following, we restrict our attention to=2 and use the solutiof#.5) as the zero-order
term in an expansion in the separation parameters. The first-order terms are given by the two zero
modes describing the separation of the vortices. These were found by Weththdsing his
results we can write, up to quadratic terms,

=124 2(a+1B)kf+ a? Y+ aBd+Bix+---, (4.9
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2a 2k
A1+|A2=|Te'9—2|(a+|ﬁ) k' + — e '’
+a?(B1+1B,) + aB(C1+1Cy) + B%(Dy+1Dy) + -+ . (4.9
Here the radial functiok(r) satisfies
1 4
K'+ —k'—| f?4+ — |k=0, (4.10
r r2
with
limr?k=1, limk(r)=0. (4.1

r—0 r—oo

Our task is to determiné, ¢, x,B;,C; ,D;, which are functions of and 6.
Equating thea?-terms in the Bogomolnyi Eqg4.3), we obtain

2a
(91+13) P+ Tc,be'g—lf(Bl+|Bz)e2"’=4kf

’ 2k —16
k +T e 7, (4.12

91Bo—9,B1+ 2(fye 20+ fye?'f) = — 2k?f2. (4.13

A Fourier expansion with the minimal number of nonzero terms leads to the ansatz

y=g(nf(re?’+g(re ",

3 (4.14
B, +1B,=b(r)e'’+ib(r)f(r)e 3",
and to equations fog(r),g(r),b(r), andb(r). The equations fog(r) andb(r) read
~ 1l+2a ~
g= ; b—b’, b=-1h". (4.15
The functionsg(r) andb(r) must satisfy the equations
1
9"+ Fg’—fzg=2k2f2, (4.16
1 1+f2 1+4a+4a’ 2k
b7+ —b" —| ——+ - |b=—aki{k'+ =], (4.17)
r

Equating thew8-terms and theg2-terms in the Bogonolnyi Eq4.3), we obtain equations for
¢ andC,, and fory andD;, respectively. These equations, which are very similar to Eg$2
and (4.13), can again be solved by functions with the saéhdependence as i#.14) but with
slightly different radial functions. Collecting all results, we can write the solution, up to quadratic
terms, in the form

+2a
r

¢=fe2'0+2(a+|,8)kf+(a2+,82)gfe2'9+(a+|ﬂ)2( ! b—b’)ez"“r---,

(4.18

e "'—1(a?+B%g'el’+i(at+1B)’bfe 30+ | .

2a 2k
A1+|A2=|Te'ﬁ—2|(a+|,8) k' + -
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It remains to be shown that the quadratic term&iig areC” functions onR? which do not
change the actiofand the winding numbgrTo this end we use the power series expansions of
f,a, andr?k at the origin(where the series convengé

f(r)=Ffr2+ 2+ ..., a(r)=2r2— L6+ ..,

(4.19

K(r)=r"2+kqr?+ ...

Heref;=0.236 andk; = —0.025 from the numerical analysis. We find that the solution@ df6)
and(4.17 have the following expansions at the origin:

g(r)=g_4logr +g,+ $f2r2+---,
(4.20

b(r)=b_,r t+byr+(3b;—2fk)ré+ ...

The higher-order terms ig(r) are even powers af, whereas the higher-order termshfr) are
odd powers ofr. Hence, the quadratic terms {4.18 are C* near the origin if and only ih_;
=b_,;=0. So far, the constantg; andb, are arbitrary.

For larger the functionsf,a, andk can be written as convergent series whose leading terms

are?
f(r)y=1+f,(r)e "+,
a(r)=1+ay(r)e "+---, (4.21)

k(r)=ky(r)e "+---,

with coefficient functions which are polynomially bounded. This leads to the existence of expo-
nentially decaying solutions which asymptotically are of the form

g(r)=gy(rye""+--+, b(r)=by(r)e "+---. (4.22

Hereg, andb, are polynomially bounded.

By numerical integration, the coefficiengg and b, which lead to an exponential falloff at
infinity, are found to beg;=—0.144 andb,= —0.026. The existence of such functions can be
explained analytically as follows: E¢4.16) shows that for positivg,, g cannot have a maximum
for anyr. So the function diverges exponentially. For very snggll the term on the right-hand
side of(4.16) will force the function to cross theaxis, and then, as before, diverge exponentially.
For very large negativg,, the third term in(4.16 will force g to go through a maximum for large
r. After that, the function cannot have a minimum and must go to minus infinity. Because of the
continuous dependence on the initial data, we have an open set of data forguricbses the
r-axis, and an open set of data for whiglyoes through a maximum below thexis. Therefore,
we have at least one value @f for which the function does neither. This function must converge
and does so to zero, exponentially.

A similar argument explains the existence of an acceptable solbtionto Eq. (4.17). The
right-hand side of that equation is positive. So adarannot have a maximum above thexis.

Also, for very small negativd,, the right-hand side will forcéd to go through a minimum and
then cross the-axis. For very large negativie;, the third term in(4.17 preventsb from going
through a minimum. In between these two possibilities we find the desired solution which goes
through a minimum but does not cross thaxis. Such a solution must decay exponentially.

The cubic terms can be calculated in the same manner. We find, at third order,
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3+2a
b= ...+(a+|,8)(a2+,82)fh+(a+|,8)3(—C’—I— c)e—4'9+---,
(4.23
2 2k B
Aj+1A,= -+ 1(a+18)(a’+ B?) —h’—Fh+2g k’+T +2kg' e
+1(a+1B8)3fce >0+
The new radial functiondj(r) andc(r), satisfy the equations,
1 4 1+2a
h”+Fh’— f2+—2 h=4k'g’ +2fk| 2fk?+3fg+ ; b-b'/|, (4.29
r
1 1+f% 9+12a+4a? 2k\[1+2a
c"+—c'— + c=2kf’b—2| k' + — b-b'|. (4.25
r 2 r2 r r
Near the origin, Eq(4.25 has a series solution in powers of of the form
h(r)=f2+hr2+hré+---. (4.26

The constant term is given in terms of the coefficienbf the leading term in the expansi¢h 19
of f(r). The form of this term leads to the cancellation of the'-terms in the radial function
multiplying e'? in (4.23, and thus ensures that this term(#h23 is C* on R?. The series in odd
powers ofr for c(r) which solves Eq(4.25 near the origin, is

c(r)y=cqyr3+cro+---. (4.27)

The form of the series solutions at the origin guarantees that the cubic ter(d<28) are C”
functions onR?. For larger, Egs.(4.24 and(4.25 have exponentially decaying solutions.

V. CONCLUSIONS

Our expansions show a simpkedependence in terms of trigonometric functions. In both
models, the expansion @ exhibits the following pattern:

eme
ema

—216 2160

—416 emo

—6160 —-216 210

e—&a e—ma eme

Here the first line gives thé@ dependence of the zero order term; the second line gives the first
order term, and so on. We get a similar triangular pattern fogtdependence ok, +1A, at any
order. For the radial functions we find differences between the two models. In the model for one
complex field, the radial functions can be given explicitly in terms of exponential functions.
However, for the angular dependern(@el5), a singularity occurs at the origifWe have found no
solution to(3.14) which is not of the form(3.15; we have no proof that there is nohe.

For the Ginzburg—Landau theory on the other hand, the expansion is smooth, at least up to the
order to which we carried out our calculations. In this model the radial functions are not given in
terms of well-known functions. Having used the technique to calculate the terms up to third order,
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it is quite clear how to proceed to any order, and also how to proceed in the case of more than two
vortices. We expect these expansions to converge for small separation parameters in the physical
Ginzburg—Landau model. However, we do not have an estimate of the radius of convergence.
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Energy estimates for the von Ka “rman model
of thin-film blistering
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We consider the behavior of buckling driven thin-film blisterings using von-Ka
man’s plate theory. Our focus is on the setting where the blistered region is the unit
square with clamped boundary conditions at the vertical sides and periodic ones
along the horizontal sides. In this setting, we prove rigorous upper and lower
bounds for the elastic energy which are of the same order as the film thickness. We
also present a convincing argument for the necessity of branching of folds near the
boundary as has been observed in experiments.20@1l American Institute of
Physics. [DOI: 10.1063/1.1316058

I. INTRODUCTION

In this sequel to Ref. 1, we continue our investigation of thin-film blistering via the von
Karman model. These blisters are formed when a thin film in a state of residual compression
decoheres and buckles away from its substrate. The goal is to better understand the nature of the
complex folding and branching patterns observed in experinfeht®®ur focus here is on the
incorporation of in-plane displacements in the model.

Given a blistered regiof2, we shall denote by the out-of-plane displacement of the film and
let (w;,w,) denote the in-plane displacements. Then in our scaling, the vomagamodel takes
the form

min f [(W, 5+ Wg )24 U U 42— 5,5]%+ 2|V VU|?, (1)
w=0,u=0, Q
dulon =0, at 9Q)

wheree is the normalized film thickness. The formulation above corresponds to the choice of zero
Poisson’s ratio, though we note that this choice does not affect the essential features of the
problem. See Ref. 1 for a more detailed discussion of the model and, for example, Refs. 8—11 for
a derivation.

In this article, we choose to study the setting wh@rés the unit square. What is more, we
will take clamped boundary conditions a0 andx=1, but replace the clamped conditions by
periodic ones along=0 andy=1. To be more specific, our problem is formulated as

111
min f f [(W, g+ Wg )24 U LU 42— 5,5]°+ % VVul?dx dy. (2
u=0u,=0, atx=0,1 J0JO
wy=0w,=0, at x=0,1
Wq,W5,u,Vu, periodic iny

Here « and B run between 1 and 2. We will henceforth refer to the first term above as the
membrane energy and we refer to the singular perturbation term as the bending energy.

A primary motivation in our choice of boundary conditions is to focus our attention on
perhaps the simplest geometry in which the behavior of the film near the clamped boundary can be
successfully analyzed. A secondary rationale is our belief that through a local curvilinear coordi-

@E|ectronic mail: sternber@indiana.edu
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nate change, the folding patterns of an arbitary smooth blistered domain might be understood
through a study of the annular setting. Physically, our choice of domains is also motivated by
earlier studies of instabilities of straight delamination blist&sfs. 4, 12. By analyzing carefully
the structure of solutions for a straight blister, our hope here is to gain insight into the nature of the
stress distribution near the boundary which is ultimately responsible for the observed instabilities
of such a blister region.

Various simplifications have been carried out @ If one completely ignores all in-plane
displacementswi; =w,=0), then one is left with an energy of the form

2
+e?|VVul?

1
|Q|+fn(1—§|w|2

whose infimum is clearly®@(1). This functional has been studied extensively; see, e.g., Refs.
13-17.

Another possible simplication @iL) comes from assuming a one-dimensional folding pattern,
sometimes referred to as an “Euler columf.That is, one takesi=u(x), w;=w;(x) andw,
=0. This again yields an order 1 infimum to the energy.

In Ref. 1 we took a less drastic simplication by only assuming a one-dimensional in-plane
displacementi.e., w;=w;(x), w,=0] while allowingu to depend orx andy. Within this class
of deformations, we obtained rigorous upper and lower bounds on the energy ofeértiérhe
construction of a minimizing sequence achieving the asymptotic upper bound involved compli-
cated branching patterns near the clamped boundaries of the unit square. This construction was
reminiscent of branching sequences used in Ref. 18.

In this paper, we do not impose any restrictions @n ,(w,,u) and we then prove rigorous
upper and lower bounds for the full von Kaan energy(1) which are of ordek. In light of these
bounds, one obtains a convincing argument for the necessity of branching near the boundary. We
make this argument formally at the outset of the next section. The folding patterns we obtain lend
rigorous support to earlier observations made in the physics literéRefs. 12, 19 In Ref. 19
one finds a prediction of branching near the boundary based on energetic scaling arguments while
Ref. 12 contains a stability analysis of the vonrian equations linearized about the one-
dimensional “Euler column” solution for a straight-edged blister—an analysis which predicts the
instability of this solution. Our assertion here is that the oscillatory profile near the boundary
predicted by our construction imposes nonuniform stresses along the boundary which in turn
indicate the instability of the delamination front as is depicted, for example, in Ref. 12, Fig. 4. The
resultant wavy boundary of the blistered region would then resemble the often observed “tele-
phone cord” pattern for such films.

Finally, we should note that our formulatiqd) arose through a choice of eigenstrabﬂ
=, Inreality, the eigenstrains involved are much smaller. Alternatively, one could have taken,
say, e§5= Kdqg, With k a second small parametén addition to the thickness). Then, with a
rescaling ofu— ku and w1, w,)—k(wy,W,), one would arrive at an energy of ordef%. (See
Remark 2).

Note: After submission of this paper, we learned of a similar result for arbitrary smooth
domains just completed in Ref. 20.

II. MAIN RESULTS

Before presenting the main theorem and its proof, we wish to give a feel for the ingredients
leading to the lower and upper bounds on the minimal energy. Thus, for the moment, we proceed
formally.

Much of the argument relies on the obvious requirement to keep the membrane energy as
small as possible. In particular, one would expect a minimiaeminimizing sequengdo satisfy
the condition
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2

1 1
fo (Wzyy(x,y) - Euf,(x,y) —-1| dy=~0,

for x away fromx=0 or x=1. In light of the periodicity ofw, in y, this suggests that

11
fz us(x,y)dy~1, ()

for suchx. However, the boundary conditions farimply thatféuf,(o,y)dy=féui(l,y)dy= 0,
necessitating a boundary layer along the two vertical sides of the unit square. Let us introduce a
boundary layer width$ and note that in light of3), the integrand in the membrane energy will be
O(1) within this layer, yielding a contribution to the total energy of ord¥s).

On the other hand, turning to the bending energy in such a boundary layer, we see that since
u, must make ar)(1) change over ar-interval of sizes, we find

82
f J uZ ydX dy~ — (4)
boundary Iayer

Hence, the total energy is at least of ord(é+ 2/8), which immediately indicates the lower
bound ofe and a boundary layer width~ .

To motivate our construction leading to an upper bound of oggdare must look at the other
terms in the bending energy. To analyze these, we formally introduce a quafxjtyepresenting
the wavelength of oscillations ofin they-direction forx away from the boundary. In view @8),
however, one can equivalently think @f(x) as measuring the amplitude af along vertical
segments. For example, one might thinkfk) = (f gu?(x,y)dy)*2.

With this notion in hand, we can estimate

Y(8)\?  &%y(0)?
2 uZ dx dy~ 2( ) 5= .
¢ ffboundary Iayerxx y=e 52 5\?

Since we previously found thd~ ¢, the above estimate shows thdts) ~ ¢ as well if we are to
achieve the upper bound of orderOn the other hand, using the standard inequality

f 2olyf uyydy>(f 2dy) :

we see througlt3) that

1 1
2
us (X, y)dy= —-—,
fo w(xy)dy ¥(X)

for x in the interior of the square. Consequently, the total bending energy behaves like
e2[ [1/y(x)?]dx. This suggests that we must increage) from O(e) to at leastO(/s) as we
move into the interior of the square.

In our particular construction, we achieve this transition incrementally by successively dou-
bling the wavelengths as we move towards the interior of the square.

So far we have neglected the contribution from the membrane energy in the interior. Ideally,
one might seek to eliminate this contribution entirely, leading to the conditions

Wy, +3Uu5—1=0, (5)

Way+3US—1=0, (6)
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Wyt Wqy+ Uy =0. (7)

Taking the sum of the secongderivative of (5) and the second-derivative of (6) and then
subtracting the mixed second derivative(@f, one arrives at a consistency condition,

Uyullyy— Uz, =0. (8)

That is, ideally, the graph af should be a developable surfasee Ref. 21 In particular, one can
satisfy this condition by takingi=u(x+y). Our particular choice fou below involving cosine
functions is motivated by these considerations and by the exact solution in the one-dimensional
example found in Ref. 1.

These heuristics are now made rigorous through the following theorem.

Theorem 1: There exist positive constants @nd C, independent of such that the minimal
energy E of (2) satisfies the bounds

C]_8$E8$C28,

for ¢ sufficiently small
Proof: (i) Lower bound Suppressing the-dependence, we denote a minimizer(® by
(u,wq,W5,). Then denote by the positive number satisfying

1
5= max{x:f uy(x',y)2dy=<1, Vx’e[O,x]J.
xe[0,1] 0

Certainly 0< =<1 since the boundary conditions imply thaf(0y) =0 fory €[0,1].
Then, using the periodicity ofr, in y, we estimate the membrane energy[ 6n5]X[0,1] as
follows:

Jols (WZV ) e fog( [war 505 1dy) - U Su —1dy) dx= 5 5.

9)

If 6=1, then the desired lower bound is immediate. If, on the other haid]l, then
féuy(é,y)zdy=l and one can estimate the bending energy in this strip from below by

N NEYEK 2 &2
€ fo fo U dx dy=e fog(fo uxydx) dy—g. (10
Hence, we find
eoto e 11
=_65+—=
=70+ ==, (1)

(i) Upper bound We begin by constructing a sequence of functiansv ,w,) on the unit square
which will satisfy the boundary conditions at=0. Again, we will suppress the-dependence in
referring to our constructed sequence. Then through some straight-forward reflections and rescal-
ings, we will modify the construction to satisfy the boundary conditions=al as well.

Making the definition

1 n
bn: (Fﬁ) ) (12)

we will denote the strigb,,. 1,b,]1x[0,1] by I, for n=0,1,2 ... ,N whereN will be specified
later. Then for anye>0 we define a positive number<l1 by the condition
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1
mszw, for some integerk, (13
and we let
asl®
an= on (149

We also introducd:[0,1]—R andg:[0,1]—R as any two functions satisfying the conditions

0=f(x)<1, 0=g(x)=<1, for xe[0,1], (15)
f(1)=1, f'(1)=f(0)=f'(0)=0, (16)
9(0)=1, g'(0)=9(1)=9g'(1)=0, 17

f(x)?+g(x)?>=1, for xe[0,1]. (18

We are now prepared to define the functiorn our construction via the formula

X+y X+y
u(x,y)=2a,| co +1|f,(x)+2a,,4|CO +1]gn(x), (19
ap An+1
for xel, andye[0,1], n=0,1,2,..,N where we have introduced
X_bn+l)
f(Xx =f(— 20
n( ) bn_bn+1 ( )
and
X—DBni1
X)=0g| ———|. 21
In(X) g<bn_bn+1 (21

Note thatu so defined will satisfy the periodic boundary conditiony a0 andy=1 in light of
(13) and will be sufficiently smooth in light of16)—(17).

Next we turn to the definition ofv,. In order to eliminate one of the terms in the membrane
energy completely, we will choose this function so that

u
Wz'y: 1-—=. (22)

2
[ Xty
_Zanfn(x)gn(x)s”_{( a ”

+ha(x), (23

<N

This leads after an integration and a usg18) to the formula

an+1 5 . X+y
+ 5 gn(x) sw{z(a

n+1

an .
Wy (X,y)= ?fn(x)2 SII’{Z

2 ) (x+y
+§anfn(x)gn(x)5| 3 a

n

whereh, will be specified shortly.
We turn now to the definition ofv;, where one goal will be to completely eliminate the
contribution to the membrane energy from the cross-term

1 1 1 2
(EWl,y+ §W2,X+ Euxuy) .
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This can be accomplished by choosimgx) = —2x and then seekinw/; of the form
W1(X,Y)=Wy(X,y)+h(X,y)+2X,

where, in order to kill the cross-term, we are led to take
X+

2( Y
an

+ (Fa(X)gn(x) + F1(X)gn(X))

—&5+10n(X)gp(X)sin

5 [ xt+y 2 i 3
a, si 2 )|” 30
X+ X+
009( 4 +an119p(X) COS( Y
ap An+1

Integrating iny we see that each term im, is a product of functions ok+y and eitherf,f/,
gnd5, fug, or g,f}, along with a factor that is quadratic &, anda, ;. We take the arbitrary
function ofx arising through the integration to be zero.

With this choice, one can compute,, to find thath, ,=h,, plus terms involving products of
quadratic expressions &, anda, . ; with expressions involving eithef ()2, (g,)%f/.gp or f/g;,
multiplied againstO(1) quantitites. Hence,

hl,y(XvY) == anfn(x)f;(x)sin

X+
)
An+1

X+y

an

+1

anfr(x) +1]]. (24

—2uy(x,y)

a2
—2) : (25

hl,X: hl,y+ O bn

To clarify our construction, note frortl9) thatu,=u,+A where|A| is of orderO(a,/b,)
while w,, takes the formw,,=w,,+B—2 where our choice offi; yields the condition

hyy+B+Au,=0. (26)

Turning then to the remaining term in the membrane energy, we find thr@®&yh(25), and
(26) that

Wyt 3US—1=W,y+B+hy,+3(u,+A)>—1

2
an
b—)o

a2
F) : (27)

1
Wy, + 5“32’_ 1) +B+hy,+Au+0

Estimating the bending energy is much simpler. Indeed, a view of (19), along with the fact
thata,<b,, immediately yields the estimate

, in 1. (28

1
IVVu|=0
a

n

Consequently, recallingl?) and(14), we arrive at the estimate

[

+2

2 1 2
+(W2’y+ Eui_l)

1 2
Wi+ EUx_l

1 2
E (Wl,y+ WZ,X) + E Uxuy

+82|VVu|2}dxdy

O aﬁ
= h3
by

b
+820( ;g) <Ce*3v2)", (29

n
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whereC is a positive constant independentsofndn.
We wish to continue the iteration anuntil the functionu is decreased t@(e), leading us
to selectN so that

1
W"“SZB and bN+l:8' (30)

We should point out here that this choice Mfis consistent with our condition that,<b,.

Summing ovem we that find that the total energy over the §et1]x[0,1] is bounded from
above by

N
283 (V2)"~e (V)N =0(e). (31)

Our next task is to match the clamped boundary conditions=eQ. To accomplish this, we
will interpolate as was done in Ref. 1. For completeness, we present the construction below. In the
strip[0,e]X[0,1], we setu=P where

P(x,y)=

u, 2u 3 3u Uy,
— + - — .
8_2 ?)X (;2 e X (32)

Hereu andu, are evaluated atz(y). Note thatP andV P so defined agree with andVu atx=¢
while P(0,y)=0 andVP(0,y)=(0,0).

For the functionswv; andw, in this strip[0,6]X[0,1], we simply linearly interpolate i
between the functionw ,(e,y) and 0 fora=1,2.

To estimate the energy in this boundary layer, we first note |fa&{ = O(1) while |[VVP|
=(0(1/e) and|Vw,|=0O(1) since|w,(e,y)|=0(e) for a=1,2 andy [0,1]. Hence, the total
energy in the layef0,e]1X[0,1] is O(e).

It remains to alter our construction so as to satisfy the boundary conditiorzslatas well. At
first glance, one might be tempted to simply compress our construction to the interv&t]
X[0,1] and then reflect evenly inx. However, in view of the term

2

1, \2
W+ su—1

in the membrane energy, this would require an odd reflectiow ileading to a discontinuity since
w;(1y)#0. What is more, such an even reflection wfwould lead to a jump inu, since
u,(1y)#0.

Instead we will take a different tack. Using almost the same construction as we used on
[0,1]X[0,1], we can work on the strig2—b,,2—b,,,1]X[0,1] for n=0,1,2,..,N and an inter-
polation layerf 2—¢,2] X[ 0,1] to obtain the boundary values

u(2y)=uy(2y)=wq(2y)=0, for ye[0,1]. (33

Noticing thatw, is the sum of-2x and an oscillatory functiofcf. (23)], we use the interpolation
layer to eliminate the oscillation, leaving the boundary values

Wy(2)y)=—A4.

In light of (33), we can now take an odd reflectionnfor w; and even reflections far andw,
S0 as to obtain a construction ¢0,4]X[0,1] whose energy i0(e). Rescalingx—x/4, y
—Yyl4 and (,w,,w,)— 1/4(u,w4,w,), and using the periodicity of our original constructiornyin
we obtain the desired construction on the unit square. O
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Remark 1:In our heuristics preceeding the proof we indicated that an interior lengthscale for
oscillations inu of order ¢¥2 would suffice. In fact, there is some freedom, in that any scale
betweens 2 and £ will do, and we have chosen the latter in our construction.

Remark 2:When the von Keman model is derived, it is assumed that the derivatives of the
in-plane displacements\; ,w,) are small and, therefore, quadratic terms in these derivatives can
be neglected; see, e.g., Refs. 8—11. We note that in our construction, the first derivatives of
(wq,w,) are of orderO(1). However, in reality, for thin-film blistering problems, the eigenstrains
are smaller, e.g.e:‘,ﬁ:k&ag, wherek=0(1). Had wetaken such eigenstrains, then, with a
rescaling ofu—ku and v;,w,)—k(w;,w>), it is obvious that the derivatives ofn,w.,)
would have been of ordeP(k). Consequently, our construction is consistent with the assumption
in the von Kaman model.
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The Fokker—Planck equation has been very useful for studying dynamic behavior
of stochastic differential equations driven by Gaussian noises. However, there are
both theoretical and empirical reasons to consider similar equations driven by
strongly non-Gaussian noises. In particular, they yield strongly non-Gaussian
anomalous diffusion which seems to be relevant in different domains of Physics. In
this paper, we therefore derive a fractional Fokker—Planck equation for the prob-
ability distribution of particles whose motion is governed byaalinearLangevin-

type equation, which is driven by a g stable noise rather than a Gaussian. We
obtain in fact a general result for a Markovian forcing. We also discuss the exis-
tence and unigueness of the solution of the fractional Fokker—Planck equation.
© 2001 American Institute of PhysicgDOI: 10.1063/1.1318734

[. INTRODUCTION AND MOTIVATION

The Fokker—Planck equation is one of the most celebrated equations in Physics, since it has
been very useful for studyifghe dynamic behavior of stochastic differential equations driven by
Gaussian noises. However, it turns out that many physical phenomena are outside of this frame-
work. For instance, it has been argued that diffusion by geophysical turbéiérceresponds,
loosely speaking, to a series of stickifigauses when the particle is trapped by a coherent
structure, andfas? flights, when the particle moves in the jet flow. A similar phenomenology is
observed for zoo plankton grazifig.

Although there have been some atterffiptsanalyze and quantify this behavior with the help
of the classical Fokker—Planck equation, i.e., assuming finite moments of all orders, some labo-
ratory experiments® or numerical simulations of geostrophic turbulelfcshow that this phe-
nomenology could be rather a consequence of the presence of heayidailsower law falloff
for the probability distribution and a strong anisotropy with a clearly preferred direction of diffu-
sion. One can concludethat if the processes are additive, the corresponding walks arg Le
motions.

dAuthor to whom correspondence should be addressed. Electronic mail: schertze@ccr.jussieu.fr

0022-2488/2001/42(1)/200/13/$18.00 200 © 2001 American Institute of Physics
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Let us recall that indeed stable\nemotionsL (t) generalize the Brownian motidsy(t) in the
sense that first they are also motiafesg., Refs. 12 and 13vhose incrementdL (t,At)=L(t
+At)—L(t) are stationarythereforeAL has no statistical dependence tprand independent for
any nonoverlapping time lagst. Therefore,L(t) corresponds to the sum of independent, iden-
tically distributed Ley stable variable$*"*® The second common property is that these incre-
ments satisfy a “stability property:” up to a rescaling and recentring, the sum of different steps
has the same probability distribution as one of the stepsy Istable variables are precisely
defined by this property. The stability property implies in both cases a property of attraction: under
rather general conditions a renormalized sum of independent identically distributed variables
converge to a stable law. Furthermore, there are no other attractive laws. This explains why the
stable property is so important. The attraction property corresponds to a broad generalization of
the central limit theorem, with the important difference that whereas the classical thé&daeiss-
ian casgis satisfied with the condition that the variance is finite, the convergence towardga Le
law is obtained with the condition thait onlythe variance of the summanis is infinite, but
also that all their moments of ordegrequal to or larger than a critical order (0<a<2) are
infinite. This critical orderx is called the Ley stability index and corresponds to the exponent of
the power law of probability distribution tails:

any s>1: PI(|AL|>s)~s “=any q=a: E(|X|%) =0, 1)

where Pr denotes the probabilitig( ) is the mathematical expectation, asds a given(large
non-negative threshold. This statistical divergence of @ylLmotion is due to jumps, whereas a
Brownian motion is almost surely continuous.

This index is the most important of the four parameters defining s Istable law. The
second one is the skewne8q —1=<pB=<1) which defines the degree of asymmetry of the law,
which is maximal for8=—1 or 8=+1, and the law is symmetric whef=0. In spite of its
name and some common propertiBs)evertheless does not correspond to the classical skewness
of a quasi-Gaussian law. The latter is indeed undefined for a stable law due to the above-
mentioned statistical divergences. The centeorresponds to the statistical mean when defined
(i.e., @>1) and/or to the median when symmetfice., 8=0). The scale parametd(D=0)
corresponds to a generalization of the variance of the Gaussian case. More precisely, as discussed
below, it corresponds to the intensity scale of the cumularpo§sibly noninteggrorder a. It
yields an anomalod8 generalization of the classical Einstein relation: V() — X(to)]=2D(t
—ty), where Var() denotes the variance. Finally, let us emphasize that the Gaussian case corre-
sponds to the limit case= 2, which also implies3=0, i.e., no asymmetry.

Further comments are now in order on the relevance oflmaotions in Physics. On the one
hand, claims in favor of the relevance of \yemotions have been made on many physical
phenomena ranging from subrecoil laser codifrfgto diffusion by flows in porous med@;?
including finance fluctuatior;?° see Refs. 26 and 27 for other examples. Many systems indeed
display a phenomenology rather similar to that we reported above on geostrophic turbulence.

On the other hand, important questions have been raised. In particular, Ref. 28 questioned the
resulting infinite variance of the advecting field for porous media. Indeed, it turns out that recent
estimate®’ of the power law of the probability distributions of the hydraulic conductivity yields an
exponenta~3.5. The question of finite variance might apply to other examples, in particular for
atmospheric turbulence where different stutflggeld a critical exponent~7 for the wind field.
Therefore, in spite of their clear phenomenological interest, the relevance of puyeniations
could be questioned.

The main goal of this paper is to clarify and define a framework adequate for handling
motions more general than puréwyemotions and which are nevertheless generated by the latter.
We will do it by building upon a series of rather recent watks’***which show that the
probability density of particles moving with a {zg motion satisfies a generalized Fokker—Planck
equation involving fractional orders of differentiation. Indeed, it could be first argued in a “very
formal and phenomenological” manriérthat a fractional power of the Laplacian yields an
anomalous scaling for the corresponding diffusion.
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A fractional Fokker—Planck equation was obtained in a less formal manner by Refs. 32 and 35
in the framework of the continuous time random walkd RWs model of anomalous diffusiofr.
However, this method does not involve directly a stablgyLprocess, but a walk sharing some
behavior common with the latter, without being equivalent to it. A different fractional Fokker—
Planck equation was introducEdwith the help of a phenomenological and interesting transfor-
mation of the classical Fick law into a fractional Fick law. However, it is not clear that its solution
corresponds to énon-negativi probability distribution. A rather distinct approach was followed
by Refs. 34 and 19 since it starts withimear Langevin-type equation with random forces which
are exactstable Lery processes, which can be symmetric as well as asymmetric, and with no
limitation on the possible values of the \neindex . The fundamental mathematical tool which
is used is the second characterigtic cumulant generatindunction of the motion defined by this
Langevin-type equation. The particular case of symmetric processes correspond to what was
previously inferred by Refs. 31, 32, 35, and 37. However, it was shown that in the more general
case of asymmetric processes, a new nontrivial advective—diffusive term appears. This is con-
firmed with the help of a reinterpretation of the characteristic function of\gy Ineotion®

We already discussed that theoretically and empirically the nonfiniteness of the variance could
be questioned. There are two more general questions: the inhomogeneities of the medium, which
are first emphasized for the introduction of thevizemotions, are finally reduced to (homoge-
neous distribution of times when the particle is strongly kicked. As soon as this representation is
granted, the mediurand its propertiesdoes not intervene any longer. This is very restrictive and
for instance incompatible with the multifractality of the meditifi(or of the diffusion when
observed. The second reason is that the underlying processes are thought to be strongly nonlinear,
whereas the transport is modeled with the help ¢$tachastit linear equation.

Both the successes and limitations of the previous results plead in favor of investigating a
local and nonlinear modeling with the help of\yemotions. This is the reason that we investigate
the properties ofhonlinearLangevin-type equation forced by awestable motion.

IIl. STATEMENT OF THE PROBLEM

Further to our above discussion, we consider the followiaglinearLangevin-type equation
for a stochasti¢real) quantity X(t) (e.g., location of a partic)e

dX(t)=m(X(t),t)dt+ o(X(t),t)dL, 2

where the driving source is a log stable motiorl (t) instead of Brownian motioB(t). The latter
case corresponds to the basis of stochastic caldelgs, Ref. 4D and the corresponding differ-
ential equation is often called the Ito—Skorokhod equation. The extensiorviostable motion
L(t) is rather natural and straightforwafel.g., Ref. 41 due to the common properties oft) and
B(t) that we discussed in Sec. |, i.e., their infinitesimal increments are independent identically
distributed and furthermore stable.

More precisely the Ito stochastic calculus corresponds to consider thdt tise similarly to
dB, a forward increment in timéit should be understood atl(t,dt)=L(t+dt)—L(t)]. This
means that the value ofat timet is determined by events prior to the application of the stochastic
force dL(t), which acts only from time to t+dt.

The EQq.(2) can also be understood under its integral form

X(t)=X(t0)+f m(X(t),t)dH—f o(X(t),H)dL, (3

where the last term corresponds to a stochastic integration of a stochastic process. The integration
of a stochastic procesB(t) [in the case of Eq(2): ®(t)=a(X(t),t)] with respect to the ey
motion L, is rather straightforward in the case of step proce$ses:

N—1

O(t)=P,, for te(ty,thr), n=0,1,...N—1;j<I>(t)dL=go D, (L(the)—L(tn) 4
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and this rather suggestive definition is naturally extended to functional spaces in which the step
processes are dense.

In order to establish local properties, for instance the time evolution of the probability of the
particles, we will use the differential forfEq. (2)], whereas Refs. 34 and 19 rather used the
integral form[Eq. (4)] which becomes cumbersome in the nonlinear case and is in fact useful only
to establish global propertidSec. 1X).

After having emphasized the similarities betwedit) andB(t), it is important to underline
the nontrivial consequences due to the fact, contrary to the Gaussian case which has all its
moments finite, Ley motions have a finite critical order of divergence of statistical moments
(0<a<?2). These include the fact that the mathematical techniques which could be used can be
rather distinct. For instance, our derivation will rely on the use of the second characteristic
function of the increments, Sec. Ill, instead of probabilities of the increments as done usually for
the derivation of the classical Fokker—Planck equation. An obvious reason is that the former are
relatively simple(see Sec. VI, while the latter are not, with the only exception of the three
following casesa=2, B=0; a=1, 8=0; a=1/2, 3=1. The fundamental reason is that both the
stability property and the divergence of moments are related to the presence of a cumulant of
noninteger ordew. In relation to this problem, the convenielnt Hilbert structure of Gaussian
processes is reduced tol&® Banach structure for stable g processes. This is particularly
important for the integral equatio), when defining functional spaces where step processes are
dense.

The linear case, which is the hitherto studied case, corresponds to

m(X(t),t)=m=const; o(X(t),t)=o=const. (5)

X(t)—X(to) is also a Ley motion which has the same \ae stability indexa as its increments,
but with a different center or trend and scale or amplitude.

In the nonlinear casen(X(t),t) ando(X(t),t) are(possibly nonlinearfunctions ofX(t) and
t, which satisfy certain regularity constraints to be discussed (&&t. 1X). They correspond to
inhomogeneities of the medium, which were ignored in the linear case. As a possibly important,
but simple example, let us mention the weextension of the so-called geometric Brownian
motion, which is rather ubiquitous and for instance is at the core of the Black—Scholes model for
option pricing:m(X(t),t)=mX(t) anda(X(t),t) = X(t), wherec is the votality constant of the
price X(t) of a given stock share.

We will demonstrate the following proposition:

Proposition 1: The transition probability density:

Vi=tg: p(X,t[Xg,to)=PrX(t)=x|X(tg) =Xq) (6)

corresponding to the nonlinear stochastic differential equation (2), with\gy lfercing of param-
etersa#1 or =0, y, D=0, is solution of the following fractional FokkePlanck equation

J Jd
7t P(X,t[Xg,t)=— &(?’U(X,t) +m(x,1))p(X,t[Xg,to)

—D| (= A)Y(|o(x,1)|*p(X,t]|Xg,t0))

J
+ Bo(a) (= 1) 2| (x,D)]" o (6D P(Xtxo,to)) @)
with the initial condition

P(X,to|Xg,to) = 8(X—Xo), (8)

where §(x—Xg) is the degenerate Dirac measure ig and w(«a) is defined by
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Ta
a*1l: w(a)=tan7 9

and where the fractional powers of the Laplaciawill be discussed in Sec. VI. Proposition 1 and

Eq. (7) are for scalar processése., A= 9?/9x?) and their extension to vector processes will be
discussed and presented in Sec. VIII. One may note that the fractional diffusive isotropic operator
—(—A)*? applies via a fractional diffusivityo(x,t)|%, whereas the advective—diffusive term
corresponds to a conjugate action of a fractional diffusive terta- A)(*~ D2 g (x,t)|* " and a
convective term {/9x) o(x,t) on the transition probability.

This fractional Fokker—Planck equation will be established with the help of the much more
general proposition.

Proposition 2: The inverse Fourier transform of the second characteristic function or cumu-
lant generating function of the increments of a Markov proced$ Yenerates by convolution the
Fokker-Planck equation of evolution of its transition probability>gt|xg,to).

We will demonstrate this proposition in a straightforward, yet rigorous way. More precisely,
we will establish the following:

ap aK
2 xtlonto)= [ ay 2 - yly.0p(y.theosto), (10

whereK is the inverse Fourier transform of the cumulant generating function of the increments.
The K arguments will become explicit in Sec. Il.

Equation(10) not only holds for processes with stationary and independent increments, as in
the linear casg¢Eq. (5)] but also for any Markov process, including those defined by the nonlinear
Langevin-type equatiofEqg. (2) with m# const,o # consi. As a consequence of EGL0), we will
demonstrate the following.

Proposition 3: When the increment’s cumulant generating function of a Markov pro¢ess X
is defined by its expansion in cumulants,Gts FokkerPlanck equation is

(_ 1)n an
2 [Cn(X P tXo,t0)]. 1D

ap
7t uthxoto)= 2 —

An obviously sufficient condition of convergence is obtained when thd séthe orders of
differentiationn is finite. This is true in particular for Gaussian forcin={1,2}. It corresponds
to the classical Fokker—Planck equation. On the other h&ady would correspond to an analytic
expansion of cumulants. In spite of its interest, we will not discuss the latter case in this paper, nor
its relationship to the classical Kramers—Moyal expangmg., Ref. 43

Below, we concentrate on the case of a finite, but nonanalytic exparkioft,«} (noninte-
ger a, 0<a<?2), since it corresponds to the e extension(Sec. VII and yields Proposition 1
with the help of fractional derivatives, as discussed in Sec. VI.

lll. THE CUMULANT GENERATING FUNCTION OF THE INCREMENTS

The first and secon¢tonditiona) characteristic functions are, respectively, the moment gen-
erating functionZy(k,t—tg|Xq,to) and the cumulant generating functisy(k,t—to|Xg,to), as-
sociated with the transition probabilify(x,t|xy,to) of a processX(t). These are defined by the
Fourier transform of the latter, witk being the conjugate variable &f-X,:

FLp(X,t|Xo,to) 1=Zx(k,t—to|Xo,to) 12
=exp(Kx(K,t=to|Xo,to)) (13

=E[explik (X(t) = X(to))[X(to) =Xo], 14
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where E[-|-] denote the conditional mathematical expectatiBnand F 1, respectively, the
Fourier transform and its inverse:

F[f]=f(k)=fldxexp(ikx)f(x), (15)

o

s dk o
F [f]zf(x)zf_ 5 exp— k0T (k). (16)

The corresponding quantities for incremedX(ot) = X(t+ 6t) — X(t), corresponding to a
given time lagét>0, are defined in a similar way:

FIp(x+ x,t+ 8t|x,t) 1= 6Zx(k, 6t|x,t) 17
=exp oKx(k, ot|x,t)) (19
— E[explik(X(t+ 8t) — X(1))|X(t) =x], (19

wherek is the conjugate variable afx. The cumulants of the increment, are the coefficients
of the Taylor expansion oKy :

(ik)"

Tcn(x,t)+0(5t). (20

SKy (K, 8t|x,t) =t Y,
neld

As already mentioned, the classical case corresponds to an analytic expanskg,ofe.,
JCN, whereas we will be interested by a finite but nonanalytic exparkiofl,«} (noninteger,
0<a<2).

IV. PROCESSES WITH STATIONARY AND INDEPENDENT INCREMENTS

Let us first consider the simple subcase of a process with stationary and independent incre-
ments. It corresponds t8,(X,t)=C,,=const in Eqs(11) and (20) and as already discussed in
Sec. |, it includes the linear ca$Eq. (5)] of the Langevin-type equatiof®).

However, we believe that the following derivation is not only somewhat pedagogical on the
role of the characteristic functions for the nonlinear case, but also terser than derivations previ-
ously presented for the linear case.

The stationarity of the increments implies that the transition probability depends only on the
time and space lags, i.e.,

P(X,t[Xg,to) =P(X—Xg,t—tg) (21

and similarly, the characteristic functions of the increments are no longer conditioned, for in-
stance,

Zy(k,t—to[Xg,to)=Zx(k,t—tp), (22
Kx(k,t—to|Xg,to) =Kx(k,t—tp). (23

On the other hand, the independence of the increments implies that the transition probabilities
satisfy a convolutiofover any possible intermediate positignfor any given time lagst:

V6t>0: p(x—xo,t+5t—t0)=f dy p(x—y,dt)(y—Xq,t—tg) (29
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and the corresponding characteristic functions merely fagcaspectively, add Therefore, we
have,

Zy(k,t+ ot—tg) — Zy(K,t—tg) =Zx(K,t—to)(Zx(k,ot) —1). (25
This in turn leads to
Zy (K, t+ 0t —tg) — Zy(k,t—tg) = Zx(k,t —tg) OK(k, 6t) +0( 6t). (26)

Its inverse Fourier transform yields

p(x,t+ é‘tle,to)—p(x,tle,to)=f dy F [ 8Kx(k,8t)Ip(y—Xo,t—tg) +0(dt).  (27)

This demonstrateén the limit 5t—0) Proposition 2 and Eq10), as well as Proposition 3,
since Eq.(27) corresponds, with the help of E¢O), to

(="
n!

POX,t+ 810, to) = POX,tXo,t0) = 3t X, Cn f dy 8", p(y,tIXo.to) |[+0(81), (28)

where &} denotes theth derivative of the Dirac function. Therefore, we obtain

(-

d
TPt to) = X Cri POXtXo,to) (29

neld n!
which corresponds to the linear case of Etf).

V. MORE GENERAL MARKOV PROCESSES

In the case of a Markov process which does not have stationary and independent increments,
there is no longer a simple convolution equat[@&y. (24)] of the transition probabilities, nor a
simple factorization of characteristic functioftsq. (25)]. However, the former satisfies a gener-
alized convolution equation which corresponds to the Chapman—Kolmogorov idémtitid for
any Markov proces¥(t):

V 6t>0: p(x,t+6t|xo,t0))=de p(x,t+ Stly,t)p(y,t|Xg,to) (30

which indeed reduces to a mere convolutj&a. (24)] in the case of processes with stationary and
independent increments. This identity can be written under the equivalent form:

p(X,t+5t|Xo,to)=f dyf%(e”‘“‘SKX“"‘“'y'”p(y,tlxo,to). (31)
Noting that we have
pxthiauto)= [ dy py.thxo to) [ e, @
we obtain
p(X,H&IXo,to)—p(X,tIXo,toF&f dy F~1[8Kx(k, 8t]y,t)Ip(y,t|xo,to) +0(t). (33

In the limit 5t— 0, this corresponds to Proposition 2 and Edf)). WhenJCN, it yields with
the help of Eq.(20):
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—1)"
Sp(X,t|Xg,tg) = &gj dy d(my[(TCn(y,t)p(y,t

Xo,tg) [+ 0(6t). (34)

The limit st—0 corresponds to Eq11) and demonstrates Proposition 3 for a Markow
process.

VI. EXTENSION TO FRACTIONAL ORDERS

In the two preceding sectionSecs. IV and V, the fact that the indiceaeJ should be
integers intervened at best only in the correspondence betwetger order differentiation
" ox" [in Eq. (11)] and powers of the conjugate variatd&[in Eq. (20)]. However, by the very
definition of fractional differentiatiorie.g., Ref. 44, this correspondence holds also for noninteger
orders. However, there is not a unique definition of fractional differentiation and therefore, as
discussed in some details in Ref. 19, we cannot expect to have a unique expression of the
fractional Fokker—Planck equation.

Since in the following it will be sufficient to consider an expansion of the characteristic
function involving fractional powers of only the wave numbkl it is interesting to consider
Riesz’s definition of a fractional differentiation. Indeed, the latter corresponds to consider frac-
tional powers of the Laplacian:

—(—A)*2f(x)=F |k *f (k)] (35

which has furthermore the advantage of being valid for the vector cases. However, we will see in
Sec. VIII that in general it does not apply in a straightforward manner for vector stabie Le
motions. Indeed the latter introduces ratli@ne-dimensionaldirectional Laplacians, i.e(one-
dimensional Laplacians along a given directiar(|u|=1):

— (=AY (x)=F |k, u)|*T(k)], (36)

where(.,.) denotes the scalar product. On the other hand, it will be useful to consider the fractional
power of the contraction of the Laplacian tengar

_d J 3
0 ax, a%, (37)
by a tensorg (g* denotes its transpogewith the following definition:
—(—A:g.g*)*=F|(k,g.g* K“*]=F [|g* K|*]. (39)

VII. LEVY CASE

The second characteristic function of the incremefitsof the (scalay Lévy forcing is the
following:

k
5KL(k,5t)=at[iky—D|k|“(1—i,8m)w(k,a) +0(6t), (39
wherew(k, @) is defined by
T T
a#1: w(k,a)Ew(a)=tan7, a=1: w(k,a)=§|og|k|. (40

Considering an Ito-type forward integration of E@), the incrementsSL generates the
following (first) characteristic function for the incremen#X of the motionX(t):
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8Zx(K, 8t|x— &x,t) =E(e'*MXV) 57 | (Kk,8t|x,t)+0(t) (41)
which yields the following elementary cumulant generating functétry :

ko (x,t)

SKx(k, 8t|x,t)= ot| ikm(x,t) +ik yo(x,t) = D|k|*| o(x,t)]|%| 1 |’8|k|| (X t)lw(ka) +0o(6t)

(42

and which is of the same type as E80), with J={1,a}. Therefore, as discussed in Sec. VI, we
have fractional differentiations in the corresponding Ed.), which will precisely correspond to
Eq. (7), and therefore establishes Proposition 1.

VIIl. EXTENSION TO VECTOR PROCESSES

With but one important exception, the extension of the previous results to higher dimensions
is rather straightforward. The starting point of this extension is the following nonlinear stochastic
equation K(t) e RY):

dX(t)=m(X(t),t)dt+g(X(t),1).dL, (43)

wherem is the naturald-dimensional vector extension of the deterministic-like trepds thed

X d’-dimensional tensor extension of the modulation of the random driving forceLaisda
d’-dimensional Ley stable motion. As discussed below, the expression of the characteristic
function of the latter corresponds to the source of the difficulty in extending the scalar results to
higher dimensions. On the contrary, it is straightforward to check that Propositions 2 and 3 are
valid in the vector case, with the following extensions=(RY) for Eq. (10):

m(xtle to) = fdy (x=yly,H)p(y,t|Xo,to) (44)

and for Eq.(11) (neJCNY,|n|=32%_,n)):

9 —1)lnl Pl
P tlot)=3, ) G Cox Pt b)) (49

dea (NN (Ng)! gxTLax2. %
On the other hand, Eq43) yields the following extension to Eq41):
8Zy(k, ot|x,t)=e'kMxV 57 (K, 5t[x,t) (46)
and therefore we have
SKx(k, 8t|x,t) =1 k.m(x,t) + 8K (g* .k, 8t|x,t) + 0( ). (47)

Let us recall that a stable” kg vector in the classical senéé®“®(see Ref. 47 for a discussion
on a rather straightforward generalization, or Refs. 48, 49, and 50 for a more abstract generaliza-
tion) corresponds to the limit of a sum of jumps, with a power-law distribution, along random
directionsu € B, B; being the unit ball, distributed according ta(positive measured, (u).
The latter, which generalizes the scale paramietef the scalar case, is the source of the difficulty
since in general the probability distribution of a stablery @ector depends on this measure, and
therefore is a nonparametric distribution. However, as discussed below, there is at least a trivial
exception: the case of isotropic stablevisevectors.

Corresponding to our previous remarks(ciassical stable Lery vector has the following
(Fourien cumulant generating function:
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KL(L()=5+(|_<.}/)—JU (ik,u)*dX(u) | +o(at) (48)

€dBy

which yields with the help of Eq47):

0~
SRy =—dvimt gy —F | | (gt ok asw)| (49)
gt~ - uedB;
The scalar casfEqg. (39)] corresponds to
T
Osp=<1l: B=2p—1, d3(u)=Dco > [POu-1)+(1—pP) S+ (50

For any dimensiord, the second term on the right-hand side of E&p) corresponds to a
fractional differentiation operator of order. This operator can be slightly rearranged. With the
help of the odddX ~(u) and everdX *(u) parts of the measurés, (u):

2d3"(u)=d3(u)+d2(—y), 2d37(u)=d3(u)—dZ(-u) (51)
and the identity(# being the Heaviside function
(ik)*= K| “[6(k)e'*™?+ o(—k)e'(*7I] (52)

one can write the extension of E(f) under the following form:

Jd
21 PO tXo0,to) = —divim(x,t) + g (x,1). )] P(X,t[Xo, to)

~[{((=4:g.g*))s+—((V.g*).(—A:g.g*)* 5]
X p()_(vt|)_(01t0)a (53)

where the symmetric fractional diffusive and, respectively, the antisymmetric advective—diffusive
terms are defined, similarly to E¢38), in the following manner:

(800 |

ue

. dX " (WFHI(g* (x,0) k)] (54

(Vg (~aig.0) B |

uedl

dX " (WF T (=ig*(x,0).kw|(g* (x.t).kw[* .
By
(59

In general, each term corresponds to a rather complex integr@tinich is indicated by the
symbol(.)s) by the measureX of directional fractional LaplaciangEg. (36)]. However, the
symmetric term becomes simpler as soon as the everdpartof the measure?, is isotropic.
Indeed, the integration over directions yields only a prefabtor

(~(84:¢.¢") s =D(-dig.0) 0= [ dx* Wl wl” (56)
l_JEt?B]_

and for =2 this corresponds to the classical terth:§.¢g*) of the standardd-dimensional
Fokker—Planck equation. &%, itself is rotation invariant, then the asymmetric operator vanishes,
sincedX ™ =0. If furthermore,g is scalar, i.e.g= o1, then one obtains the following Fractional
Fokker—Planck equation:
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J
St POtX0,to) = —divi g y(x,) + m(x, 1) Ip(x, t|x0, to) (57)

—D[(=A)*[a(x,)]*P(X,t|Xo, o) (58)

Therefore, as one might expect the rotation symmetries yield a rather trivial extension of the
standard Gaussian case: a fractional powef the d-dimensional Laplacian, as in the pure scalar
case[Eq. (7)]. Obviously, the integration performed in E&J) is also greatly simplified as soon
asdX (u) is discrete, i.e. its support corresponds to a discrete set of direatjons

On the other hand, let us note that the framework of generalized stabieveetors?’~>°
allows one to introduce a much stronger anisotropy than the mead&urallows for classical
stable Lery vectors. This therefore diminishes the importance of the asymmetry of the latter.
Indeed, the components of a generalized stablg vector do not necessarily have the sameyLe
stability index, the latter being generalized into a second rank tensor. Similarly, the differential
operators involved in the corresponding fractional Fokker—Planck equation no longer have a
unique order of differentiation. This is rather easy to check in case of a discrete mdagure
and we will explore the general case elsewhere.

IX. EXISTENCE AND UNIQUENESS OF THE SOLUTION

The preceding sections established a generalization of the Fokker—Planck equation for the
evolution of the probability distribution of nonlinear stochastic differential equations driven by
Levy stable noises. This is the main goal of this paper. Naturally, one would also like to have if
possible a theorem of existence and uniqueness of the solution of this equation. Due to its origin,
such a theorem will also imply that the solution will remain positive and normalized, as required
for a transition probability. In this section we argue that the general results obthinethe
classical Gaussian case£2) are also relevant for the kg extension, whereas up until now
existence and uniqueness conditions of partial fractional differential equations have been scarcely
explored(see however Refs. 52 and)58nd therefore we cannot rely on general results.

The classical Fokker—Planck equation belongs to the well-explored domain of parabolic equa-
tions. Existence and uniqueness of the solution fundamentally ¥egoln the fact that the linear
operatorA=—A is a (self-adjoin} positive generator of a semigroup of contraction operators
T(t)=e ™, t=0. In the case of constant coefficierilinear Langevin equationthe solution is
directly obtained with the help af(t) and this ensures its existence, uniqueness, and positiveness.
Note that in our case, the semigroup action corresponds to the equation of convidtati¢24)].

Similar results hold for a Lipschitz variation of the coefficients, i.e.,

[m(x,t) —m(y,t)|+|o(x,t) — o(y,t)|<D|x—y]| (59
as well as a condition of slow growth in time of the coefficiem&x(t),t) and o(X(t),t), e.g.,
Im(x,t)|+]o(x,t)|<C|1+X], (60

whereD andC are given positive constants.

These conditions have been extensively used for the classical Fokker—Planck equation with
non constant coefficient®.g., Ref. 43 Considering now the fractional generalization, it is im-
portant to note that the fractional power of the Laplaciat— A)*”2 remains positive, since its
definition Eq.(35) corresponds to replacing the eigenvalédy eigenvalues having as real part
|k|*. Therefore, we remain inside of the previous framework of contraction semigroup and the
previous results should hold.

This could also be seen from the integral form of the differential equation. Indeed, in the
classical case, the Lipschitz condition is classical for the Brownian forGificas well as for the
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more general case of martingale and semimartingale for€it§The latest case is relevant for the
stable Ley forcing. The Lipschitz condition can be rather understood as a condition of conver-
gence of the Picard iteration method towards a fixed point:

X”+1(t)=X(t0)+f m(xn(t),t)dt+f a(X"(1),1)dL; XO(t) = X(to). (61)

On the other hand, the condition of slow grow@0) in time prevents a finite explosion time,
i.e., X(t) remains finite for any given finite time this condition is rather general, since it is
already required by the deterministic part of the Langevin-type equation.

X. CONCLUSION

We have derived a fractional Fokker—Planck equation, i.e., a kinetic equation which involves
fractional derivatives, for the evolution of the probability distribution of nonlinear stochastic
differential equations driven by non-Gaussiarvy.etable noises. We first established this equa-
tion in the scalar case, where it has a rather compact expression with the help of fractional powers
of the Laplacian, and then discussed and presented its extension to the vector case. This fractional
Fokker—Planck equation generalizes broadly previous results obtained for a linear Langevin-type
equation with a Ley forcing, as well as the standard Fokker—Planck equation for a nonlinear
Langevin equation with a Gaussian forcing. As suggested in Ref. 36 and in the comments of Ref.
19 on Refs. 32 and 35, we will show elsewhere, that the present results could be extended to
include fractional time derivative in the Langevin equation and in the corresponding Fokker—
Planck equation. This is particularly important for multifractal modeling, since the generators of
dynamic universal multifractal$ are defined by this type of equations.
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We discuss the relationship between two approaches to integrable partial differen-
tial equations, one using formal affine Lie algebras and the other Banach-Lie
groups. In the first approach integrability of the equations follows from commuta-
tivity of Hamiltonian flows on the Lie algebra, while in the second it follows from
commutativity of certain flows induced by an action on the Banach—Lie group. We
show that these two methods are essentially equivalent since one can calculate one
type of the flows from the other. The classes of solutions encompassed by the two
methods, however, vary significantly. We demonstrate this relationship specifically
with the nonlinear Schidinger equation. ©2001 American Institute of Physics.
[DOI: 10.1063/1.1312197

[. INTRODUCTION

Integrable partial differential equatiofiBDE’s), such as the Korteweg de Vri¢kdV) equa-
tion or the cubically nonlinear Schdinger (NLS) equation, have been studied in the context of
infinite dimensional Lie groups or their Lie algebras for many years now. One approach, origi-
nated by the Kyoto schodlconsiders flows of an Abelian group on an infinite dimensional
Grassmannian. The partial differential equations then arise in Hirota form as tieePaguations
for a projective embedding of the Grassmannian. On the other hand integrable PDE’s are often
studied in the zero-curvature form. This expression arises from modeling the Grassmannian by
G/G, whereG is a certain infinite dimensional Lie group with subgroups, G, such that
G_G, isdense inG, andG_NG, ={l}. Commuting flows orG/G. are constructed as flows
g_(t), teR", on G_ whose commutativity leads to matrix PDE'’s in the zero-curvature form
which are equivalent to scalar PDE’s for matrix coefficients, such as the NLS or the KdV equa-
tion. The equivalence of the Hirota approach to the zero-curvature method was given by Segal and
Wilsor? for the KP hierarchy, and was recently generalized by Bergvelt and ten Kfoode.

The zero-curvature equation is actually a partial differential equation on elemgntthefLie
algebra ofG. In Ref. 4, Flaschka, Newell and Ratiu observed that this equation is also related to
commutativity of certain Lax pair flows on the Lie algebga, and that these flows have a
Hamiltonian interpretation in terms of the natural Lie—Poisson structurgqnthe dual ofg. .

This approach leads to an understanding of the integrability of the original PDE’s in terms of the
Liouville integrability of the flows ing? , as given by the Adler—Kostant—Symes theorem.

Our purpose in this paper is to describe the relation between the Lax pair flogus @md the
Abelian flows onG/G, . The literature often treats the two approaches as equivalent but we have
been unable to find a published proof of this fact. Indeed, if one takes care to distinguish which
spaces of solutions are discussed in the two approaches it becomes apparent that they are not
exactly equivalent. We remark in Sec. Il that the Lie algebraic approach provides all regular
solutions for the the NLS equation, while it is generally known that the Lie group approach leads
to rather obscure subspaces of solutions due to the necessity of a Banach—Lie group structure of
G (see Refs. 2 and)5In Sec. Il we describe how to construct the Banach—Lie gr@ugnd the

@Electronic mail: adams@math.uga.edu

0022-2488/2001/42(1)/213/12/$18.00 213 © 2001 American Institute of Physics
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Abelian flows onG/G, whose commutativity gives rise to integrable PDE’s. This is illustrated
with the NLS example.

In Sec. IV we provide a computational proof of the equivalence of the two approaches to
integrable PDE’s. If one begins with a suitable Abelian flg@) in G, then one obtaing_ (t)
e G_ by a Riemann—Hilbert type splitting dd, and the solutiorX(t) to the Lax equations on the
Lie algebrag_ is given by conjugating(0) with g_(t). On the other hand if we start with a
solution X(t) to the Lax equations, then producing the solutgn(t) to the Riemann—Hilbert
problem is a little more complicated. It involves solving a differential equation on the ggoup
which is determined from the Lax equations ¥(t). The first half of this argument, presented in
Proposition 1, is well knowifand perhaps accounts for the general notion that the two methods are
entirely equivalent but the second half, Proposition 2, is somewhat more obscure. Examining the
relationship ofg_(t) to X(t) helps provide an understanding of the relationship between the
different classes of solutions given by these two approaches. To pasX({itdro g_(t) one must
solve a differential equation in some Banach—Lie group, and this requireX{hgtlies in a
particular Banach—Lie algebra. In Sec. V we present a geometric interpretation of the relationship
between the two approaches. This is basically just an application of the general setting provided by
Guillemin and Sternberg in Ref. 6.

II. THE ADLER-KOSTANT-SYMES METHOD OF FLASCHKA, NEWELL AND RATIU

Let g be a Lie algebra and lgf* denote its dual which igweakly) paired via(, ):g* Xg
—C. The spacey* admits the structure of a Poisson manifold with the Lie—Poisson bracket
defined by

SF G
Sa’ da

{F,G}(a)=<a, D, aeg*, F,GeC”(g*). (1)

Here 6F/ S« is the functional derivative o, i.e., it is the element of satisfying

SF _d
B el = at

Bracket (1) plays an important role in the description of many finite and infinite dimensional
Hamiltonian systemsgsee Ref. Y. We shall briefly describe this in the following. §f is infinite
dimensional and the pairing, ) is weak, we must restrict this bracket to an appropriate class of
functions so thatF/Sa makes sense, i.e., it defines an elemery.details of the problems that
can arise may be found in Ref. 8.

A Hamiltonian He C*(g*) generates the vector field,; on g* by the relationXy[F]
={F,H} whereXy[F] is the Lie derivative ofr along X, Xy[F](@)=dF(a)Xy(«a) for any
aeg®. It follows from (1) that the flow ofXy satisfies the generalized Lax equation,

SH
Sa ]

F(a+tB), for al Beg*.
t=0

da_ &
a— a

where ad (X) is the dual of adK) defined by(ad® (X)«,Y)={a,ad(X)Y).
Now, let I(g*) denote the space of all @dnvariant functions org*:

I(g*)={F|dF(a)(@d*(X)a)=0, for all Xeg, aecg*}.

If the Lie algebrag has a Lie groufs, then functions satisfyingeAd* (g~ ) =F for all ge G are
ad*-invariant. Here Ad(g) is the dual of Ad@), (Ad*(g)a,X)=(a,Ad(g)X). One easily
shows from the definition of the Lie—Poisson bracket thgt )(is in the center oC*(g*), i.e., if
Fel(g*) then{F,H}=0 for all He C*(g*). Thus ad-invariant functions are integrals of the
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motion for any HamiltoniarH. Unfortunately, their vector fields vanish identically so they gen-
erate only trivial flows. In order to construct nontrivial Poisson-commuting flows, one needs an
additional structure og.

Suppose thag splits into the vector space direct sum of subalgebras,

9=9-®g.,
and letll, :g—g, denote the projection with kerngl . Then its dual also splits into
g-=g"@gl,

whereg’ =Ann(g-) is the annihilator ofy+ . Sinceg, is a Lie subalgebra, the spagt is also
equipped with the Lie—Poisson structiie. Now suppose thati; e I(g*), and letH; denote the

restriction ofH, to g7 . ThenH, is generally not in the center @ (g%), henceH, generates
nontrivial flows ong* . But if H, is another invariant function o, then the celebrated result of

Adler, Kostant and Symesee Refs. 9, 10, and L4tates thaH,; andH, Poisson commute. More
precisely,{H;,H,}=0 where
6H 6H,
H*( 5a)’”*( 6a)

ThusH, andH, generate commuting Hamiltonian flows oli which are given by

{Hl,ﬁz}(a)=<a, > aegsy.

da_ &
d—ti——a

H+(5—al )a, aegh . 2

Equation(2) takes the usual Lax form i is self-dual, i.e., if we can identifg* with g by a
nondegenerate symmetric bilinear form gnvhich is ad-invariant:

(ad2)X,Y)=—-(X,ad 2)Y). (3

In this case the coadjoint representatiorgain g* is identified with the adjoint representation of
g on itself, andg® is identified withg’ , the perpendicular complement @f with respect to the
bilinear form(3). Equation(2) then becomes

_l 5Hix
- +Wl

Hence the Adler—Kostant—Symes theorem provides a systematic method for searching for inte-
grals of the motion of a system described by the Lax equadan

Flaschka, Newell and Raflapply the Adler—Kostant—Symes result to the loop alge?lh(ra)
of formal seriesX=Eim:_mXizi, Xjesl(2,0), m<w. They show that the Ablowitz—Kaup—
Newell-SegufAKNS) equations,

ax

- 1
7t , Xeg-. (4)

J
&%:[Q‘k),Q], k=1, (5)

whereQ=3",Q;z ' andQ®=3* Q;z¢' arise as commuting Hamiltonian flows si(2)* .
Their theory is outlined below.

Let g denote the loop algebra(Z) with the commutator bracket. This algebra admits a
natural splittingg=g_® g, into subalgebras where

g+=[X=§%XﬂiK63KZEﬁ,
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g_=rx=2 Xz
i=1

XiesI(Z,C)].

We can identifyg* with g by the nondegenerate symmetric bilinear form,
(X,Y)=res_, Tr(X(2)Y(z)), (6)

which is ad-invariant. The perpendicular complemengofis g- =g_, sog* is identified with
_. Now consider a family of Hamiltonian functions g =g,

H(X)= Zres_o Tr(zZ¢"1X%(2)), k=1. (7)

One easily checks that the Hamiltoniag are ad-invariant, hence their restrictionsgto give
rise to a hierarchy of commuting flows given by E4). Furthermore, iX=X"_X;z"'eg_, then

SH K
M| =5 | =T (2 X) =, X, 12 =M.
OX i=o0

Therefore, for this choice of Hamiltonian functions the system of equati®rs equivalent with
the AKNS equationg5), with X standing forQ andM, for Q.

It is generally stated that the commutativity of the flows of typggives rise to the “zero
curvature” equation,

M M MM, ]=0 8
o T MeMiI=o0. ®
However, if one compareX; ¢ to X ¢, it only follows that the left hand side of E¢8) com-

mutes withX. To see that it is actually zero requires more work. Suppose without loss of gener-
ality thatk=1+p for somep=1. Observing that

p
My=2PM+ 2, X 4i412°7, (9)
i=1

a lengthy but straighforward computation yields

| | p
oM oM ) X o
-1 +[M,M]=27 ZpZ Kt - — g = 2 X1 Xi4je0)2P7 0.
o = =0 Jty =0 =1 !
(10

SinceX satisfies

ax— M, ,X d &x— M,,X 11

Gt ~[MieX] and Z==[M;.X], (11

substituting(9) into the first equation above and making use of the second, one obtains

o %)

Xiv1__; IXitq
2P 7= 77
IZO &tl |ZO (9tk

= P
+i26 J_Zl [Xis1, Xisjea]2?H

Multiplying this equation byz' and taking the polynomial part of both sides yields

l p k-]
&XH—l _|

0= zk2 ake 2> == 2 2 DX X oa]21. (12)
i=0 07t| =0 atk =1i=0
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The difference between the right hand sides of Efjg) and (10) is given by

k—] p
[Xis1, Xisjer] 27070 :Z 2 [Xiti+1: X441l 2P

33,

p
=2 2 [Xivir1: X442 2P

p
:; [Xi+|+1ixl+j+1]zp_l_1’

which is zero by skew symmetry. Thus Xfsatisfies the system of equatiaidd), then the matrix
elements oK are solutions to a hierarchy of PDE’s obtained from the zero-curvature equ@tion

To illustrate the point, let=1, k=2, and consider the subs8C g_ which consists of all
Xe g_ such that the first three Fourier coefficients have the form

i 0 0 iu —ilu? h
X;= il Xe=2| — | Xg=2| — . ,
1=\ 0 I 2 —mu O 8 —h ||u|2

for some complex valued functiongt,,t,) andh(t;,t;). One easily checks tha is invariant
under the flows(11) (see Ref. 12 for a geometric explanation of thiShen Eq.(8) with M,

=X,z+ X, andM,=X,72+ X,z+ X5 implies thath= 3u, andu satisfies the NLS equation
iug— %UXX—4U|U|2=0, (13
wherex=t; andt=t,.

One should remark that any regular solution of the NLS equation can be studied in this
framework. Indeed, suppose thgx,t) satisfies(13), and formX;,X, and X3 as above with this

particularu andh= 3u,. ThenX,, n=4, can be found so that fot==;" | X; z ' we get
axX X
—X=[X12+X2,X] and Ez[xlz2+xzz+x3,X]. (14

To find X,, notice that(14) implies

9Xy IXy

x0T 70

X, X,
W:[xl!XS:lv TZ[Xllxll]i

X, X
(9—X=[X2,X3]+[X1,X4], 7:[X1,X5]+[X2,X4],

and generally

Xy,
X :[XZ!Xn]+[XlIXn+l]1

X
=X X+ X X ] X X2,

Now let us notice that if we ignore thedependence and simply consider the system of ordinary
differential equationgODE’s) given by the variable, then we can solve recursively fof, by
noting first that the off-diagonal part of, is determined fronj X;,X,]= (X3)x—[X2,X3], and
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that the diagonal part is determined up to an integration constant Xoy,€[X5,X,]
+[X41,X5]. Meanwhile, this last equation determines the off-diagonal paksefwhile the next
equation will determine the diagonal part, and so on.

Since thet-equations are three term recursion it is a little more complicated to see that they

are not overdetermined. First, we get the off-diagonal parXpfrom the equation for X,);.
Then, using the equation foiXg), we can write the off-diagonal part ofs in terms ofX, and
lower terms. Finally, the diagonal part aK{), involves only the off-diagonal part ofs, and so
we get an ODE for the diagonal part ¥f. Meanwhile, the off-diagonal part oi(), determines
the off-diagonal part 0Kg in terms ofXs and lower terms, and the diagonal part 8], involves
only the off-diagonal part oKg. Thus the argument continues.

Finally, in order to check that we can solve these two ODE’s simultaneously in order to get
X(x,t), we must check that the mixed partials are equal. But this just amounts to checking that
zero-curvature expression is zero for our particllerandM,. As noted above, this is guaran-
teed by Eq(13).

lll. THE ZERO-CURVATURE METHOD AND THE RIEMANN-HILBERT PROBLEM

In this section we describe the zero-curvature approgohsystems of integrable PDE’s, and
examine its connection with the Adler—Kostant—Symes method of Flaschka, Newell and Ratiu. In
the zero-curvature method one uses commutativity of certain flows on a Banach-Lie@rmup
derive a hierarchy of integrable nonlinear PDE’s on the Lie algebfa.dfhe flows are generated
by an action of the translation groly' on G as outlined in the following.

Suppose thaG is a Banach—Lie group which contains closed subgrdeips G, such that
G_NG,={l} andG_G, is open(and usually dengen G. Then the Lie algebra d& splits into
the vector space direct sum of subalgebgasg_@®g, . Consider the differentiable actioR"

X G—G given by

tg=exp<21 tiPi)g, (15)

where{P,,...,P,} is contained in an Abelian subalgebra @f . Note that the actiori15) de-
scends to an action dt" on the quotient spac&/G . by

1(gG,)=(19)G, . (16)

Now letge G_G_. . Thentge G_G, for all t in a neighborhood) of 0 R". Hencetg can be
written in a unique way as the product

tg=g-(H)g+(1), tel, (17

whereg.. € G, . We shall refer to(17) as the Riemann—Hilbert factorization tf. Combining
this with Eq.(16) it follows that the action ofR" on the Grassmannia@/G, induces the flow
g-(t)G, on G/G, . Since[P;,P;]=0, thet; andt; flows commute. Next we will show that
g_(t) is a “solution” to a hierarchy of nonlinear PDE’s which live on the Lie algebr&af. By
differentiating Eq.(17) and using(15) one obtains

,1(99— + élg+ -1

-1p _ Y9+
g* Plg* g, atl &t| g+ .

By taking the projectiodl , :g—g. alongg_ it follows that

99

-1
9

I.(g-'Pig-)=

DenoteM;(t) =TI, (g~ *(t)P;g_(t)). Since the flows commute, the system of equations,
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99+ :
a_'[i_M‘g+’ i=1,...n,

satisfies the compatibility conditiorg@)tktlz(g+)tl t, which yields the zero-curvature equation,

—ﬁMk—a—'\A'jL[M M,]=0 (19
ot aty ko

We can think of(18) as an abstract partial differential equationgan. In practiceG is usually the

loop group of a linear group, and the zero-curvature condition is equivalent to a nonlinear PDE
satisfied by a matrix elemenit) of M, andM, . Sinceu(t) can be explicitly calculated in terms

of g_(t) we have the mappings

g—g_(H—u(t).

The functionu(t) simultaneously solves all equations of the fof@®) for different values ok
andl, and the Riemann—Hilbert factorization establishes the local existenog)ofMoreover, it
linearizes the equations far(t) since a multiplication ofg by expt;P,) corresponds ta(t)
flowing in thet;-direction by the amounit;. Since the mag—g_(t) is invariant under the right
multiplication ofg by an element o6 , , we may assume thgte G_ . Then by uniqueness of the
splitting we haveg=g_(0), sog encodes the initial values af(t).

A convenient analytical structure @ which suffices to describe a number of integrable
systems can be constructed as folldiase Ref. b Let .4 denote the Banach algebra of functions
f:S'—C, f(2)=2,.7a,2", with pointwise addition and multiplication, relative to the nojif,
=3,.s1a,|. A consists of continuous functions d® which have an absolutely convergent
Fourier series. Consider the 8t (n,.A) of all invertible elements iM(n,.A). HereM(n, A) is
the matrix Banach algebra with the nofil||==7;_,||A;j[l;. By Wiener's Lemm&' f(z) "' Aif
and only if f(z) vanishes nowhere o&', henceGL(n,.A) is the set of all elementa such that
det(A(z))#0 for all ze St. ThusGL(n, A) is a Banach—Lie group as an open submanifold of
M(n,A). Let o be a norm preserving involution on the algebi#n, 4), and define

G={geGL(n,A)|gg’=1}. (19

A standard result from the theory of Banach manifbldssserts that the group is a closed
submanifold ofM(n,.4), and hence a Banach—Lie group with Lie algebra,

g={XeM(n, A)|X+X7=0}.

Associated with the loop grou we introduce the subgroups
G+:[geGg(z)=2 Cizi], G:[gEGg(Z)=|+E Cizi}.
i=0 <0

The Lie algebras o5 andG, are closed subalgebras gfvhich they decompose into the direct
sum of vector spaceg=g_®g. . Thus the seG_G, is open inG. A particular choice ofr and
the action ofR" on G determines the hierarchy of differential equations representédigyNote
that the above construction also includes twisted loop algebras related to systems such as the
mKdV equatiod? and the Neumann oscillatd?.We emphasize that there is a major difference
between this method and that of Flaschka, Newell and Reteiflows are given directly from a
group action and there is no use of a Hamiltonian structure
To illustrate these remarks let the involutionon M(2,4) be given byg?(z)=g'(z) where
the bar conjugates the Fourier coefficientgg¢t), but not the parameter. Define the action of
R? on G by
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tg=eX[Xt1i0'3Z+t2i0322)g,
whereo;=(3 _9). Suppose thay_(t) is the solution of the Riemann—Hilbert factorizationtgf
such thatg_(0,0)=g. If g_=1+A;z *+A,z 2+ --- is the Fourier expansion aj_(t), then
g-t=1-A1z 1+ (AZ—Ay)z 2+ ---. Substituting this intdVl, =TI, (g_'io3z"g_) we obtain
M]_:i(T3Z+[iO'3,A1],
Mzzi0'3Z2+[i(T3,Al]z+[iU'3,A2]_A1[i0'3,A1].
Denote
ia u

L
_gip) A A=(g al’

wherea andb are real-valued functions of andt, (note that the group law i@ implies thatA;
has the form specified abovéVe then have

Al:

0 iu

—u 0

—ilu? h )

—h  ilul?

Ml:i0'32+2 y MZZZMJ_"_Z

where h=au+ir. Now it is straightforward to verify that the zero-curvature conditid®)
implies thath= 3u, andu satisfies the NLS equatioil3) wherex=t; andt=t,.

IV. RELATING THE TWO METHODS

In this section we give a direct proof of the equivalence of the Flaschka—Newell—Ratiu
method and the zero-curvature approach. We shall consider a slightly more general type of AKNS
equations of which{5) is a special case. In the following it is assumed @Bat a given Banach—

Lie group defined by Eq.19) whose Lie algebra admits the ad-invariant bilinear f@én andg_
satisfiesg- =g_ .
Consider the Riemann-Hilbert splitting @,

eXD(thiRpZi)QZQ—(t)ng(t), geG_, (20)

where we assume th&e GL(n,C) is chosen so tha®PZ e g, for somepeN. We associate to
splitting (20) the generalized AKNS equations on the Lie algebr&af:

X k+
Ek:[n+(z pxp),x], XEg*' (21)

Note that(21) is equivalent with(5) whenp=1 becausdl . is the projection containing only

non-negative powers o. According to Flaschka—Newell-Ratiu theory, the Lax equati@is
are commuting flows of ad-invariant Hamiltonians,

1
H(kp)(X)zmregonr(zk“’Xp”), 1<k=n.

Proposition 1: If the flow g (t) e G_ is obtained by solving the RiemanHilbert problem
(20), then Xt)=g_*(t)Rz *g_(t) is the integral curve of (21) with initial value (0)
=g Rz 1g.

Proof: DefineX(t)=g~(t)Rz *g_(t). Then it readily follows that
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axX Jg_
— _1_
oty [ 9= Tt @2
On the other hand, by differentiating E@0) we obtain
_,09- 994 _
k+pyp_— 1 1
ZXtPXP=g~ T g; (23
which yields
‘9g+ -1

= k+pyp
o, 9 =T (27PX),

Substituting this back into Eq23) and using Eq(22) we conclude thaX(t) is a solution of the
Lax equationg21) with initial value X(0)=g 'Rz 1g. [ |

Thus, by solving the Riemann—Hilbert problem one obtains solutions of the AKNS equations.
This is not surprising, but one can show that the converse is also true. Namely, if one is given a
solution of the AKNS systeni21), then it is possible to construct the flows (t) € G.. without
actually solving the Riemann—Hilbert problgi20).

Proposition 2: Suppose that &) € g_ is the integral curve of (21) with initial value (Q)
=g 'Rz g for some g=G_. Then Xt) induces Abelian flows g(t) € G. which represent
solutions of the Riemariilbert problem (20). Furthermore, the evolution oftX is given by
X()=g- )Rz 1g_(1).

Proof: DefineM{P) =11, (Z“*PXP) andN{P)=TI_(z“"PXP). For fixedk, solve the following
differential equations fog. e G- :

09, gg_
—M P = (p)
ﬂtk Mk g+, (7tk g—Nk ’ (24)

with g, (0)=1 andg_(0)=g. Using the decompositiog**PXP=N{ +MP and Eq.(21) we
have

oX
I SNT(2)]
IO X

This implies

d ax
— I Yy s (p) -1_
a1, (9-X9-) (mkﬂNk ,X])g 0.

Henceg_ (t)X(t)g~(t) is a constant loop. BuX(0)=g 'Rz g andg_(0)=g, so it follows
that

X(H)=g-Y )Rz 1g_(1). (25)

Furthermore, in view of Eqs(25) and (24) the identity Z**PXP=N{® +M{? implies that the
productg_g, satisfies

Jd
—(g_g4)=RPZg_g,, k=1,2,..n.
Mty

This equation has a unique solutitgn(t)g+(t)=exp(EE:1thpzk)g_(0)g+(0) with initial value
g-(0)g.(0)=g. Hence the flowg_(t) andg, (t) are solutions of the Riemann—Hilbert prob-
lem (20). [ |
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V. THE GEOMETRIC PICTURE

In Ref. 6, Guillemin and Sternberg showed that the flowginobtained from the Adler—
Kostant—Symes method are given by projecting certain flows on the cotangent Gur@l¢o
T*G,, and then identifying™* G, with G, X g% via left multiplication. This geometric descrip-
tion of the Adler—Kostant—Symes flows is as follows.

LetH e l(g*). Identify T* G with GX g* via left multiplication, and use this identification to
considerH as a Hamiltonian function of* G. It is shown in Ref. 6 that this generates the flow
through @,u) € GXg* given by

(giﬂ’)'_)(g eXF(_tX),,LL), (26)

whereX=dH(—w). In this section we shall identifdH(— «) with sH/8(— ) e g.
Notice that under this flow, the spa@x g* is invariant. Right multiplication by the inverse
induces the action o&_ on GX g% given by

h(g,u)=(gh™*,Ad*(h™ ).
Thus, on the open dense subsp&eG X g% CGX g% we have the projection
mG,G_Xgl -G, Xg},
m((9+9-,4)=(g+ ,Ad* (g~ ),
given by quotienting by the action.
Guillemin and Sternberg show that the Adler—Kostant—Symes flowsl fot (g*) in g% are
given by theg® component of the projection of the flo@6). Namely, if we write
gexp—tX)=g.(t)g_(1),
then this flow is given by
p()=Ad* (@~ (D))uo, mocgat . 27

Now, let H; and H, be Hamiltonians inl(g%) whose flows are parametrized byandt
variables, respectively. Fixye g% , and let

Pi=dHi(— o), P2=dHa(—puo).
Sincex andt flows commute we can write
g exp(—xPpexp(—tP;) =g. (X,t)g_(X,t). (28)
Hence Eq.(27) gives the flow
p(x,t)=Ad* (g~ (x,t))o-
On the other hand, identifying* with g“ =g_ we have
pr(x,0)=Ad(g-(X,t))po, moEg- . (29)

From the Adler—Kostant—Symes theorensatisfies the differential equations

Ip
5=[H+(dH1(—u)),u], (30)
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I
E:[HJde(_M)).M]- (31)

As in Sec. Il, the PDE follows from the commutation relation for
I, (dHy(—w)) and IT, (dHy(—u)).

From Eq.(28) we have

exp(tPy)expxP;)g t=g-(x,t)g; 1 (x,1).

Comparing this with the Riemann—Hilbert splitting of the flow exp(+tP,)g~* we conclude that
M in Eq. (18) is given by

M= —TI1,(g-P g~ =—TI,[Ad(g-)dHy(— uo) 1=~ 1, [dH(Ad(g-)(— ko)1,

becauseH, is ad-invariant. In view of Eq(29) it follows that the commutation relations fo#
are equivalent to those fdi , [ (dH.(—«))]. Note also that the initial conditions, exemplified by
S for the NLS example in the Flaschka—Newell—Ratiu approach, are determined By tbebit
through .

Notice that in order to produce the Lax pai0)—(31) on g_ we have reduced the flows on
T*Gto T*G_ . CT*(G/G_). Hence, these flows are directly related to Hamiltonian flows on the
cotangent bundle of the Grassmanni@hG_, while the zero-curvature formalism starts with
flows onG/G, . The Grassmannia®/G _ is the “dual Grassmannian” t&/G, . If one iden-
tifies G/G , to the Grassmannian of subspaces of vectots’ (') which are in theG orbit of the
Hardy spacé.? (S'), then theG orbit of L? (S') is the collection of dual spaces &G, because
the negative frequency spaté (S') is dual toL? (St). This duality gives a map fror®/G, to
G/G_ by sending a subspace ®/G, to its dual inG/G_. Since the big cell ofG/G, is
identified withG_ (and likewise the big cell o6/G_ with G, ) this map can be considered as a
map fromG_ to G, . However, it is not the case that the flogis andg, are related by that map.
These flows are simply related by the fact that they are projections of the flow thgpingts.

We now show how this works in the NLS example. Here we chqose g- =g_ to be

L 1 0
,Lbo—_z |0'3, 03= 0 -1 .

UsingH; andH, from Eq.(7) we have thatlH,(— u,) = P, with P;=Zzio3, P,=Z% 0/5. Finally,
takingg_=1+2z"1A;+z 2A,+--- yields

My =11, [dH (= Ad(g-) uo) -
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Two different methods for the construction of {2)-dimensional integrable
lattice-field and field Hamiltonian dynamical systems are presented. The first
method is based on the so-called central extension procedure applied to the Lie
algebra of shift operators and the Lie algebra of pseudodifferential operators. The
second method is the so-called operand formalism. Both methods allow a construc-
tion of some new integrable nonlinear Hamiltonian lattice-field and field equations
in (2+1)-dimensional space. @001 American Institute of Physics.
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[. INTRODUCTION

For the last 20 years algebraic tools, basically Thenatrix approach, have been widely
applied for the construction of nonlinear integrable Hamiltonian dynamical systems. This ap-
proach was proposed in pioneer works by Adi&eyman and Semenov-Tian-Shanéland also
by Gelfand and Dikil and led finally to the celebrated Adler—Gelfand—DitiGD) scheme. On
the other hand, the notion of bi-Hamiltonicity, introduced by M&geyealed an important feature
of integrable Hamiltonian systems. Actually, it allows a construction of a whole hierarchy of
commuting vector field¢symmetries and related gradientgo-symmetriesof conserved quan-
tities in involution with respect to two Poisson brackets which “decode” the notion of bi-
Hamiltonicity. In his famous paper this notion was illustrated on the Harry—Dym, nonlinear
Schralinger, mKdV, and KdV equations, and their bi-Hamiltonian structures were found, i.e., a
pair of compatible Poissotimplectic) operators, where compatibility means that a linear combi-
nation of two Poisson operators is itself a Poisson operator. On the other hand, working in a frame
of the AGD scheme one can quite readily construct bi-Hamiltonian structures of the above-
mentioned dynamical systems and many others. We only need to start from a suitable Lax operator
which defines a specific dynamical system. This approach was successfully applied to integrable
field (1+1)-dimensional dynamical systems. In later pap€rthis formalism was applied to the
construction of integrable lattice dynamical systems.

The next task was to develop this formalism for+{2)-dimensional dynamics. However, as
shown by Zakharov and Konopelcherfkthe regular recursion operatdr for symmetries(or,
respectively," one for co-symmetrigswvhich admits an implectic—symplectic factorization, i.e.,
can be presented in the fordn= 6,- 0[1 (= 01’1~ 0,), where(6,, 6,) is a pair of compatible
implectic operators, constructed from a bi-Hamiltonian formulation of the dynamics, is a pure
one-dimensional phenomenon. Nevertheless, as was shown in Refs. 9 and 10, equations in (2
+1)-dimensions, and in particular the Kadomtsev—Petviashvili equation, admit a new type of
bi-Hamiltonian formulation and thus the result of Ref. 8 is not violated. This generalized bi-
Hamiltonian formulation was given as a kernel representation by Fokas and $&ntfaind also
by introducing the Lenard bi-complex scheme in Refs. 13 and 14. In later Wdrk€the so-
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called operand formalism was introduced, i.e., the AGD scheme over the noncommutative ring of
formal integro-differential operators with respect 4p. The particular realization of operator
value fields is formally equivalent to the central extension approach with additional space variable
y, which allows a construction of a hierarchy of symmetries and a Hamiltonian formulation
(Poisson tensgof the (2+ 1)-dimensional dynamical systems. The central extension method was
considered in early works by Reiman and Semenov-Tian-Shahskand also by
Prikarpatsky:3° The well-known Sato approatt’! also allows a construction of a hierarchy of
commuting vector fields, but it does not contain a systematic way for the construction of a
Hamiltonian formulation of (2- 1)-dimensional dynamics. Magnano and M&gshowed how to
extend the Lenard bicomplex scheme omtdield manifold and developed a method for the
construction of Poisson structures for the Sato hierarchy usifigld Hamiltonian formalism.

Thus the results of previous papersS'® were extended onton-field manifold in the
(2+1)-dimensional case and the problem of the extension of the AGD scheme onto
(2+1)-dimensional space for the field dynamical systems was completely solved.

Here we would like to stress that when we work with more then one-field dynamics and apply
the operand formalism, we are not able to construct a whole hierarchy of commuting vector fields
which can be fully presented by the central extension approach.

The basic aim of the present paper is to apply the operand formalism for the construction of
lattice-field dynamics in (2 1) dimensions, i.e., dynamics with one discrete and one continuous
space variable. The results of this approach were given in Ref. 23 and here we present a more
detailed theory including many examples. We also present the results of the operand approach,
applied to the field dynamical systems. Although this formalism is not as complete as the one
proposed by Magri and Magnano, nevertheless it allows some new results which we present here.
As it seems to us nowadays, the Magnano—Magri approach cannot be applied for the construction
of the lattice-field two-dimensional dynamics because the Lie algebra of shift operators has spe-
cific, non-derivative-like’ features of the shifts. Here we develop and generalize the results of
Refs. 9—-13, and 16 and work in the frames of the operand formalism. In Sec. Il we recall the
R-matrix formalism and the AGD scheme. In Sec. Il we formulate the central extension proce-
dure and apply it to the Lie algebras of shift and pseudodifferefRi2I0) operators, respectively.

We llustrate the results of our approach by many examples of known and new
(2+1)-dimensional systems of lattice-field and field types, putting them into one unified scheme.
Section IV contains the so-called operand approach to the construction of the extended bi-
Hamiltonian formalism for dynamical systems in{2)-dimensions. We recall the basic notions

of the operand approach, proposed in earlier works by Magri, Morosi, and o] also by
Athorne and Dorfmal? and Fokas and Santifliand propose some generalizations of this formal-
ism. The examples considered coincide with those from the previous section but due to the
operand formalism approach the{2)-dimensional dynamical systems are endowed now with a
generalized bi-Hamiltonian structure. In conclusion we discuss basic results of this work and some
open problems.

II. LIE ALGEBRAIC APPROACH TO THE HAMILTONIAN DYNAMICAL SYSTEMS:
R-MATRIX FORMALISM

As mentioned in Sec. |, integrable dynamical systems may be constructed using Lie algebra
techniques, and the Lax equatibp=[A,L] itself can be considered as some Hamiltonian dy-
namical system on a suitable Lie algebra. Here we recall basic notions of Lie algebra
constructiortt

Let g be a Lie algebrag® the dual algebra related @by the duality map(-,-),—R,

g*Xg—R: (a,a)—(a,a)y, aeg, aeg*, (1
andD(g*):=C”(g*) be a space o€”-functions ong*. Then, let

adgxg—g: (ab)—adb, a,beg, (2
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be the adjoint action of on g, i.e., the Lie product, and
ad:gxg*—g*: (a,a)—adia, aeg, aeg* (3)
be the co-adjoint action @ ong*. For arbitrarya,b e g anda € g* the following relations hold:
adb=[a,b], (ada,b)g=—(a,adb)s=—(a,[a,b])g, 4

where[ -, -] is a Lie bracket org. The Lie bracket is:
(i) skew-symmetric

[a,b]=—[b,a] ©)

and
(i) satisfies the Jacobi identity

[[a,b].c]+[[c,a],b]+[[b,c].a]=0. (6)

There exists a naturalie—Poisson brackebn g*, discovered by Li& and rediscovered by
Kirillov, 2° Kostant?” Souriau?® and Berezirf? Let L e g*, functionsH; ,H; belong to the space of
functions ong*: D(g*), and their gradient¥H;, VH; e g, then the Lie—Poisson bracket reads

{HI5Hj}(L)::<L5[VH]5VHI]>g (7)
Consider next a dynamical system defined by
Li={H,L}. (€S)

So according to relationg) and(7), a Hamiltonian dynamical system @i can be written down
in the following form:

Li=—adyL=0(L)°VH, Leg*, VHeg, (9)

where®(L):g—g* is a Poisson tensor.
We confine our further considerations to such algebras for wgiicban be identified withy.
So, we assume the existence of an invariant metric, i.e., nondegenerate symmetric pragluct on

(a,b)g=(b,a)y, a,beg, (10
invariant under the adjoint action
(adb,c)g+(b,ad,c)g=0<([a,b],c)y=(a,[b,c])q4, a,b,cegq. (17
In our particular realizations it will be &race formtr:g—R,
(a,b)g=tr(a-b)=tr(b-a)=(b,a),, (12

where “-” means some multiplication of the elemerats € g. For example, ig is a Lie algebra
of shift operators (17), then, for a=3;a(n)' and b= 2 b (n)5 we have a-b

=3 ai(n)b; (n+i)E'J. For the PDO Lie algebrél) if a==3; a,(x)& andb=2; b; (x)aJ we
havea-b=2X; ; a;(x)dyb; (x)a where& b;(x)d} can be calculated usin@2). Then we can
identify g* with g, (g*~g) by setting

(a,b)y=(a,b)y, a,beg,aeg”, (13

where« is identified withae g. Thus, now we can write the Lie—Poisson bracket as
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{Hi Hj}(L)=(L,[VH;,VH{])4
:(L,[VH] !VHi])g
:(VHJ,[VH“L])QE(VHJ,@(L)°VH|)Q, (14)

where °” means an action of the Poisson operator on the gradigidt Hence, equation of
motion (9) takes the form

L=—ad L=0(L)sVH=[VH,L]=adL. (15)

We notice that under the above-mentioned identificagdee g, the co-adjoint action goes over
into the minus adjoint one.

Now, we can identify the dynamic equati¢hb) and the Lax equation with a natural Hamil-
tonian structure

Li=[A,L]=[VH,L]=0O(L)>VH. (16)
This abstract approach to integrable systems profits with a deeper understanding of the nature
of integrability as well as equips us with a very general and efficient tool for the construction of
multi-Hamiltonian systems from a scratch. Working with the Lie algebra formalism we will apply

it to the construction of finite field dynamical systems. We pick up the Lie algebra of shift
operators of the form

g=|L=2 < W(NE', (17
where& is a shift operator, which satisfies the simple commutation rule
Eu(n)=(E'u(n))&'=u(n+i)&', (18

E acts onu(n) as a unit shiftEu(n):=u(n+1), i e Z andu(n) are discrete functions with space
variablen e Z. For the Lie algebra of shift operatord18) atrace form (12) takes the form

tr(a)=tr| >, ja(n)&'| =2 . an(n). (19)

The vector fieldd; and gradient& H are conveniently parametrized by

oH

L= ica(u€, VH=2 &' <, (20

where 8H/6u; is variational derivative of a functionaH=3'"__ h[u(n)] and h[u(n)]
:=h(u(n), u(n=1), u(n=2),...). The PDO Lieaalgebra is given by

g={L=2 i<Ui(X)dy ., 21)
Whereaij acts ona(x) according to the general Leibniz rule
HKa=> _,CDla)dk T, (22

whereD, = ad,;x, D,a=a,,



J. Math. Phys., Vol. 42, No. 1, January 2001 Lie algebraic approach to the construction 229

=i=0

ck={0 for i=k=0 or i<0
( (-1)" for k<0,i=0

| K+i—1 )

and

Then the trace form of (12) is

tr(L)=tr(E i<ocUi(X)¢9i><):J VG{E <li(X) 3} | dX
R

=f u_q(x)dx, (23
R

and allows us to identifyg* with g. As a consequence, vector fields and gradientsVH are
conveniently parametrized by

oH

Li=2 ienlU)idy, VHL=2 it 5, (24)

where SH/8u; is the usual variational derivative of the functiortdl [zh[u(x)]dx and h[u]

:=h(u, Uy, Uy, ...). Both Lie algebras contain an infinite number of fields so, because we are
interested in dynamical systems with finite number of fields, we have to reduce the Lie—Poisson
bracket(14) onto a suitable submanifold . This procedure can be successfully done usingihe
matrix formalism.

Although all considerations in this paper are performed on the algebraic level, one has to pay
much attention to the admissible classes of functions, i.e., such that the action of all constructed
objects on them do make sense. At least in one space dimension it is obvious that the basic
manifoldM can be considered as a topological linear space of complex-valfefiinctionsf of
a real variablexe R such thatD ~f is well defined andff dx<w. In the case of lattice
functions, the continuous space variakle R is replaced by a discrete integer variable 7. In
such a case, we assume that the sexigs”~ f(n) must be absolutely convergent. In two space
dimensions the situation is even more delicate as all equations are nonlocal, but the nonlocality is
of a special form. For field systems, for example, operaﬂb,(é Dy ! never appear alone but
always in pairsD, D orDy !D,. That is, the hierarchies of symmetnes and conservation laws
belong to a field of so -called quasﬂocal functio€f courseM should be choosen as carefully
as in the one-dimensional case.

Let us consider a nonlinear dynamical system

u=K[u] (25

on a Poisson manifoldM, i.e., a manifold endowed with a Poisson structuoes M is
n-component fieldif=1), Ke TM is a vector field from the tangent bundle lgf. Letq be an
Abelian Lie algebra of Hamiltonian symmetries(@6). Then consider another Lie algelgauch
thatg is isomorphic to its some subalgebra. So, for a gitierij we denote bya its counterpart
from g. Finally, we assume the existence of some “momentum mappladg/ —g* such that
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is commuting for anyaeq. Here ¢5 denotes a Hamiltonian Poisson action with infinitesimal
generatofa. Additionally we assume the existence of a trace forrg-t#:R (12) allowing us to
identify g* with g. As a result of the above assumptions one can represent the Poisson structure
on the manifoldM as a standard reduction &t of the canonical Lie—Poisson structure on the

g*=g:
{hi hi(w)={H; H}(L):=(L.[VH} ,VHi]), 27

where the functional$;, h; belong to the functional spacd®(g). The main reason for such a
construction is thaa priori we do not know the explicit form of the dynami(25) and the related
Poisson structure. On the other hand, choosing an appropriate atgeleaselect the admissible
mapsL, and for each first we construct a respective Hamiltonian subalgebrg @amd then we
reconstruct the related subalgelran M. Hence, as regards the integrable Poissonian fl@)s
on M, we intend to construct a hierarchy of Poisson commuting functiodatsh; e D(M), i
e 7, , which can be produced first anvia the standarcR-martix approaci®>>*

We will consider a Casimir functiondl of the Lie—Poisson bracké®7), satisfying

[VC(L),L]=0. (28)

The role of the Casimir functionals in tlfe-matrix formalism will be cleared in the following.
As we are interested in finite field dynamical systems, we have to construct an invariant with

respect to ad-operation submanifold. Assume that the Lie algebrg admits a standard
R-structure, that is the new Lie bracket

[a,b]r:=[a,Rb]+[Ra,b] (29

defined by some linear homomorphisRtg—g. The ad-operation must be associative with
respect to this bracket, i.e.,

ad{[b,clz=[adb,clr+[b,adIx, (30
where now
adtb=[a,b]z, (31)

or, in other words, the new Lie bracket must satisfy the Jacobi identity or sufficiently the following
modified Yang—BaxtefmYB(q)] equation

[Ra,Rb]—R([a,b]z)=—q[a,b] (32

for anya,be g and constang.®?

Consider the following Poisson structures on the double Lie algeRrg)¢ >’
{Hi Hj}1(L)=(VH;,01(L)°VH))g, (33
{Hi Hj}o(L)=(VHj,05(L)°VHj)g, (34

wherel e g* =g is a Hill's type (scalaj Lax operator and the respective Poisson tensors are
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O,(L)eVH:=[RVH,L]+R*[VH,L], (35
0,(L)oVH:=A;(LVH)L—LA,(VHL)+S(VHL)L—LS*(LVH), (36)

where for the second Poisson structure
A+S=A,+S =R, (37)

the linear map#\; ,:g— g are skew-symmetricA7 ,= — A, ;) with respect to the trace duality and
the linear magS:g— g with the adjointS* satisfies

S Ax(a),b]+[a,Ax(b)]=[S(a),S(b)],
S*[Ai(a),b]+[a,Ay(b)]=[S*(a),S"(b)], a,beg.

(39

These are the most general, linear, and quadratic iRoisson tensors anpwhich are compatible

as it is not difficult to check tha®,(L+e1)=0,(L)+&0®(L). We recall that two Poisson
tensors are called compatible if their linear combination is also a Poisson tensor. The compatibility
condition is needed for the construction of recursion operator and a hierarchy of commuting vector
fields. The reader can find more detailed information in Ref. 24. Besides, one can verify that for
solutions of Eq(28): VH=VC(L), we get

®,(L)eVC=[RVC,L],
0,(L)VC=[R(L-VC),L], (39)

which are in the form of Lie—Poisson bracket.
Theorem 1(Ref. 31): Given a set of Casimir functionals;€ D(g*),i € Z. solving Eq. (28),

all the reduced on Munctionals G:=cju] ue M are in involution with respect to the Poisson
brackets

{ci.cito(W)={C;i.Cj}o (L)=(VCj,04L)°VCi)g=0, s=1.2, (40)

reduced from § on M according to the diigram (26), wher®@,(L) are Poisson tensors on*g

and 4(u) are respective Poisson tensors on Moreover the momentum mappingM.— g* and
Hamiltonian functionals L) satisfy the following evolution equations ofigg:

L =adgs 1.yc)L=[R(L* - VC)),L]=04(L)°VC;, s=12, (41)
which is just a Lax representation of the dynamical system (25) AR (LS 1-VC)).
To construct the simples®-structure let us assume that the Lie algefpraan be split into a
direct sum of Lie subalgebras, andg_, i.e.,
9=9+®9-, [9+.,9-]CQ-. (42
Denoting the projections onto these subalgebra® by P.g:=g-, it is easy to verify that
R=3(P,—P.) (43)
solves the mYB;) and hence defines @R-structure org. For both Lie algebras considered:
R=3(P=x— Py, (44)

where for the Lie algebra of shift operators



232 J. Math. Phys., Vol. 42, No. 1, January 2001 M. Btaszak and A. Szum

Poi@=0=1=2 i=kUi(ME, P g=goy=2, i Ui(n)E,

(45)
P, =P__, P%,=P-_, k=01
and for the PDO Lie algebra
szg:g>k:[2 izk(ui)aix]a P<k9:9<k:[2 i<k(Ui)(7ix],
(46)
=P, PL=P-_, k=0,12.
Notice that from(28) and the fact thaP-,+P_,=1 we have
[R(LS1.VC)),L]=[P=(LS"1.VC),L], s=1,2. (47

Thus, the introduction of a®-matrix ong turns the algebra into a Hamiltonian phase space.
With the results of this section we have demonstrated thafttmatrix approach is a powerful
tool for constructing multi-Hamiltonian formulatio@1) of dynamical systems in (1) dimen-
sions. The details of multi-Hamiltonian dynamics in the clse0 for the Lie algebra of shift
operatorg17) and in the cask=0,1 for the PDO Lie algebré21) the reader can find in literature
(see, e.g., Refs. 7, 24, 31, 3433Blere we will use this formalism in further considerations, i.e.,
for the construction of (2 1) dimensional dynamics.

IlI. CENTRAL EXTENSION APPROACH

Assume now that the Lie algebm (PDO or shift operatojsdepends effectively on an
independent parametgre St, which naturally generates the corresponding current operator Lie
algebraC(g)=C~(S';g) with the following modified Tr-operation:

Tra:= f Sltr(a)dy, (48)

where tr operation is defined §§9) for the Lie algebra of shift operators and (838) for the PDO
Lie algebra. The scalar product reads

(a,b)c(g) :ZTr(a' b) (49)

for a and be C(g). The current Lie algebr&(g) can be naturally extended via the central
extension procedureZ(g)—C(g) =C(g) @ C with the following Lie product:

[(a,a),(b,B)]:=([a,b],w,(a,b)), (50

wherea,Be C and w,:C(g) X C(g)—C is the standard Maurer-Cartan two-cocycle ©fg):

, a,beC(g). (51

db

wz(a,b)::Jsldy(a,Dyb)ngr a- W
The appropriate momentum map:

L:M—C(g*) (52

is associated with the corresponding current Lie algebra actid?(g)‘ onM.
Let us repeat th&-matrix approach for the current Lie algeltdg).
Casimir functionalsC e D(C(g)) satisfy now the so-called Novikov—Lax equation
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[VC,L]+D,VC=0, (53)
for all L:=(L,1)e C(g*)=C(g). The R-structureR e Hom(C(g)) is defined as follows:

[(a,@),(b,8)]z=([a,blr,wX(a,b)), (54)

wherew5(a,b) :=w,(R a,b)+ w,(a,Rb). B
Theorem 2 (Ref. 17): Given a set of Casimir functionals; € D(C(g)) solving Eq. (53), all

the reduced on M functionals;&c;(u), ue M, are in involution with respect to the Poisson
bracket

{ci ¢ i (u)={C;,Cj}x(L)
=(L,[VC;,VCilr)c(q+ @5 (VC;,VC)) (55)

=(VC;,0,(L)°VC)c(g+ @X(VC;,VC;)=0 (56)

reduced from_((ig) on M with respect to the diagram (26). Moreover, the momentum map
L:M—C(g) and Casimir functionals G satisfy the following hierarchy of evolution equations

L, =[RVC;,L]+D,(RVC)
=(®4(L)+DyR)VC;
=[RVC;,L—3,]:=0,(L,d,)°VC;, i e (57)

The quadratic structur®,(L,d,)=0®,(L)+D,R does not survive the central extension as it
fails the property of Jacobi identity. Thus, the second Poisson structure should be essentially
modified. We use in the last part of this article the so-called operand approach to derive the second
Poisson structures of (21)-dimensional systems in a generalized sense. In the following section
we illustrate the cental extension approach for Lie algebra of shift operators and for the PDO Lie
algebra.

A. Extended Lie algebra of shift operators

Here we will consider the central extension for the Lie algebra of shift operatdrke
restricted finite field Lax operator reads

k=0:L=E""*+u,, . EMT* 4o +u,EY,  —n<a=<0, (59

and the caser=0 is also included. Lax dynamics far=0 are purely (2-1)-dimensional effect
and they cannot be reduced ontoH(1)-dimensional space.

The Poisson structurés?) linear with respect to the restricted Lax operai68), related to
R=3%(P~o—P_o) and the relation$45), follows from the centrally extended-(~L—4,) linear
Poisson structur®,(L) (35) for (1+ 1)-lattice system&®

Lt=®l(Lv(7y)°VH
=[RVH,L—a,]+R*[VH,L—a,]
=—ad (VH)>o+(ad VH). o= (DyVH)~o+Dy(VH)=o, (59)

when substituteH=C with the condition[VC,L—4d,]=0 (53). On the other hand, from the
relationP-qy+P_o=1 the hierarchy57) takes the form

L =[P=oVCi,L—dy]. (60)



234 J. Math. Phys., Vol. 42, No. 1, January 2001 M. Btaszak and A. Szum

Equation(53) for Casimir functionals can be solved putting

VCi(L)=2 a&l, i=12,..., (61)

j=<i

where the function parameteas are obtained front53) succesively via the recurrent procedure.
Notice that although the solutiori§1) are in the form of infinite series, in fact we need only their
finite partsP-,VC;. In the following we present (2 1)-dimensional generalizations of some
known lattice systems as well as some new examples of lattice-field systems.

ExamplesWe illustrate in detail the presented formalism on the first example.

(1) The lattice-field BenjamirOno equation: r=1,a=0.

This case does not exist in the one-dimensional lattice case. The Lax operator has tié’form

L=&+u. (62

Using (20) for the above Lax operator we get

VH= oR 63
=50 (63
and substituting it iN59) we get the Poisson tensor for this system in the form
6,=Dy. (64)
To construct a hierarchy of vector fields we ) for i=1,2,3,... and find
P>0VC128+ u,
P_oVCy=E%+[u(n+1)+u(n)]E+u?(n)+Hu(n)y, (65)
P_oVCs=&3+[u(n+2)+u(n+1)+u(n)]E?
X[u?(n+1)+u(n+1)u(n)+u?(n)+ z(E—1)(u(n)y+3H2u(n),)1€
+ 2u(n)yy+u(n)®+ FHu(n)u(n)y+ Fu(n)Hu(n)y+ §H2u(n)yy, . . . .
Then, substituting the results to E@§0), we get the first equations of the hierarchy
u(n)tlzuy,
u(n)t2=2uuywL Huyy,
(66)
U(N)i,= 3Uyyy+3UPUy+ SH(UUY) + 3 (UHUY) + FH Uy,
whereH=(E+1)/(E—-1).
(2) The lattice-field Toda equation:=n2,a=1.
The Lax operator takes the foffn
L=&+p+vE L (67)

Poisson tensor for the lattice-field Toda equation is given by
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0 v(1-E™ 1)
0.= 68
Y(E-1w Dy (68
and the first equations from the hierarchy read:

(v(n)) _( v(n)[p(n)—p(n—l)])
pm ), o+ 1) —v(m+p(m), )

v(n)y,=v(N[p*(n)—p*(n—1)+uv(n+1)=v(n=1)+p(n),+p(n-1),],

(69
p(N),=v(n+1L)[p(n+1)+p(n)]—v(n[p(n—1)+p(n)]+v(n),

+v(n+1),+Hp(n)y,+2p(n)p(n)y,

The first equation from this hierarchy was derived for the first time in a different representation by
Mikhailov®®3° and in the Lagrange form was given in Ref. 40. Here we present a Hamiltonian
representation of the (21)-dimensional Toda equation and its hierarchy.

(3) The case: ¥ 2,a=0.

This case does not exist in the one-dimensional lattice. The Lax operator takes the form

L=E%4+us+w. (70)
The Poisson tensor for this case is given by
D, 0
9271 o E-E? 7

and the first equation from the hierarchy is

u(n) u(n)H " tu(n)—w(n+1)+w(n)
(w(n))tf( Sy, (72
Notice that eliminating thev variables we get
u(n)y=H "tu,+(uH tu), (73
and then interchanging the variablgs-t and putting® ~u:=v,
v(N)=Huvyy—(vHv)y. (74)

This is the lattice-field equation unknown so fat least to the knowledge of the authors
(4) The case: F3,a=—1.
The Lax operator takes the form

L=E%+pE+v+uE L. (75
The Poisson tensor for this case is given by

0 u(l—-E 1
9,=| (E-1)u Dy
0 0 E-E!

(76)
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and the first equations from the hierarchy read

u(n) u(n)H p(n—1)
v(n) | =| u(n+1)—u(n)+(E+1)"*p(n), |,
4

p(n) v(n+1)—v(n)—p(n)H *p(n)

u(n) u(nv(n)—v(n-1)]

v(n) | = p(Mu(n+1)=p(n=1jun)+v(n)y |, 77
P/, u(n+2)—u(n)+p(n)y

This is the lattice-field hierarchy unknown so far.

B. Extended PDO Lie algebra

The Poisson bracket on the extended current PDO Lie algebra admits only a linear Poisson
structure related to

R=3(P-—P_y, k=0,1. (78
The new Poisson structure coming frad6) and(35) is
Li=04(L,dy)°VH
=[RVH,L—0dy]+R*[VH,L—4,]
=—ad (VH)=t(ad VH)~ = (DyVH). _,+Dy(VH)=. (79

The quadratic structure, as was mentioned earlier, does not survive the central extension as it fails
the property of the Jacobi identity. Again E&3) for Casimir functionals can be solved putting

VCi(L)=2, aydk, i=12,..., (80)

j=<i

where the function parameteas are obtained front53) successively via the recurrent procedure.
Here we will use restricted Lax operators,

k=0:L=0N+un_pdN 2+ ... +Usdi+ug, (81)
k=1:L=dl+uN_108 1+ +up+dy u_y. (82)
Here again the choicel=C leads from Eq(79) to Eq. (57) and finally to the form
L, =[P=VCi L=d] (83
asP_,+P_,=1 and henc&k=P_,— 3. We will ilustrate this formalism in a few examples.
ExamplesWe illustrate the above formalism for the PDO Lie algebra on the first example.
(1) The KP equation: k¥ 0,N=2.
The KP equation is a (2 1)-dimensional extension of the KdV equation. The Lax operator

for the KP equation has the folr’

L=d2+u. (84)
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Using (24) for this Lax operator we get

_15H
VH=9, 5_U (85

and subsituting this gradient and the Lax operatai7® we derive the Poisson tensor for the KP
equation

Applying formula(80) for i=1,2,3,.. ., etc., and subsituting the respective projections of gradi-
entsP-,VC; into (83), we derive the KP hierarchy

Utlz UX y
ut2= uy y
Ug, = Uy BUU 3D Uy,

(87

Ug, = Uyyy+ 4UUy+2U,D Uy + Dy Uy,

U, = Usyt+ 10U Uy + 20U U+ 30u2Uy + 10uyyy+ 1Q"XD;2UVV

+D, 15Dy gy + 30U+ 30uuyy+ 20u,,D; tu,+20u,D; tuy,),

(2) The(2+1)-Boussinesq equation;=k0,N= 3.
The Lax operator is given By

L=ad3+udy+uv. (89

Poisson tensor for the Boussinesq equation takes the form

0 3D,
3D, O

Applying formulas(80) and(83) we get the hierarchy
o) Lo
v tl_ Uy)’

(u) ( Upy— 20y )
= 2 .
v t, §(u3x+uux_uy)_vxx

Elliminating the fieldv from this equation we can derive the {2 )-dimensional Boussinesq
equation

(90

__ 1 2(0,2 4
U= — 3Ugx— 3(u )xx_ 3 Uyy- (9D

This equation coincides with the KP equation after the replacetent,
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u u
(v)tj(vz)’ (92)

Ug, = 20 T 4(Uv ) — Ugy— (U?) gy 2Uyy+4vy,

U, = Vaxt 2U0 0t 2(02)x— 20y + 2U05— 5 (Usyt BUt BUL U+ 2U%Uy)

41 2
+ §Dx Uyy— 3 Uxxy

Ut = Usy T 5(Ulyy)y+ 5UU,+5(Uy )= 1000+ BUyyy+ 5uuy +5u,Dy Huy

—5D; Uy,

V1= Usx T 5(UL) xxxt 5 Uy )yt B(UZ0 )= 5(07) gt BU gy + 10w + 5l

+50,D5 "u,—5D; vy,

Ut = BUgyy T 404y~ BUUy+ 4Upy + BUyw — 5Uyy— 2D, toyy— 2U,,Dy U

x Uyy y

+4v,D; tuy+2u,D; 'y,
V1= 8Uguy+ BU g,y AUyt BUyyy— 12(U,Uy ) — 4UPUy + BUD .+ 24Uy,
+18v,— 3v,y—4Uyy,Dy 'uy—4uu,D} tu, + 6v,,D) tu,+6v,D) v,

—4(uDy uy)y,

3 The case: k0, N=4.
The Lax operator is

L=03+Ud2+vde+W. (93
The Poisson tensor is given by
0 0 4D,
o,=| O 4D, 2D} . (94)

4D, —2D2 2D3+uD,+D,u

Applying formulas(80) and(83) we get the hierarchy of commuting vector fields
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u Uy
v =1 Ux |,
Wi\ Wy

u — 2UyF 20y

v | = 2Wy + Uy — 2Uyy— UUy

Wi\ W 7 (Ugg+ Uy vUy+Uy)

ut3: 2U5,— 200 45+ 400y + 40(UW) , — 40Uy, 0 — 20Uv

+20(v )%~ 45U,0 x— 10U Uy — 150%Uy + 32U,y — 400, ,

Ui, = 10ugx— 28055+ A0W 45+ 40V W) — 40UV y i + 40(UW, )

—100U,0 yx— 110Uy, 0+ 5(U?) 45— 15UV ) — 200,y — 40W,, + 30Uy, + 10U Uy,

Wi, = 5Uz— 120 g+ 12Wg,+ 20(Wy) 2+ 200 Wy + 200 Wy
+ 20U Wyt 120, Wy + BU U5+ 5(UU) 43— LO(UD ) 4y
+5UWy— 10U(UD ) 4+ 5v (UUy) y— 100 (U )+ SU(UU) oo

+ 22Uy, Wy — 20Wyy+ 18Ugyy— 100 4y + 10D;1uyywL 15uuyy+5uyuy—10uvy,

(4). The case: k1,N=0.
This case does not exist in ¢11)-dimensions. The Lax operator re&tls

L=u+a, ‘w.

For this Lax operator we get the Poisson tensor

0 -D,
b1~ -D, 0

and applying formula$80) and (83) we find the hierarchy

[l =l

Uy s+ 2WX—2uXDy1uX)
—Wyx™ Z(WD; 1Ux)x ,

)7

Ug, = Uyxx— 3(UyDy MUy —3u,Dy 'wy = 3(WDy *uy), — 3w, D, *uy

-1 -1
+6u,D, “u,Dy “uy,

Wi, =Wyt B(WyDy Huy )= 3(WDy Wy )+ 6(WDy tu,Dy Uy )y,

239

(99

(96)

97

(99)
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(5). The case: k1,N=2.
The Lax operator has the form

L =02+ Udy+v -+ dy *W. (99)

For this Lax operator we get the Poisson tensor

0 0 2D,
9,=| © 2D, D5-D,+uD, (100
2D, —D;-D,+D,u 0

and applying formula$80) and (83) we find the hierarchy

u Uy
v =| Ux |,
w t Wy
u 2vy+ Uy
v | =| 2wyt vyt Uoy |,
w — Wi+ (WU)y

t

Ut,= U 3 U2 B(UD )+ B0+ 120, + 60+ 3D, Huyy

+3u,D; tuy,
(101
Utszvxxx'l' g(Wu)x+ %vax-i- %UWX+ %vax+ %vvx'l' guzvx
+ %UxDx_luy!
Wi, = Wyxx ™ %(Wu)xx"' %(Wux)x_" %(Wv)x"' %(UZW)X—’_ %Wuy
+ 3w,Dy tuy,
The reductiorv =w=0 gives the mKP equation
Ug, = Ux— 3UU,+ 3D, Uy +3u,Dy tuy . (102
The Poisson tensdd00) after the Dirac reduction procedure takes the form
91=8(D,—D,D; *+u) 'D(u-D,—D;'D,)* (103
and the respective symplectic operator
J=6;'=5(u-D,—D, 'D,)D; (D,—D,Dy *+u). (104

IV. THE OPERAND APPROACH

In this section we implement the ideas of Magri-Morosi—-Tdrdd and
Athorne—Dorfman—Fokas'®®of the so-calledbperand approaclin the frames of theR-matrix
formalism. This gives us a powerful tool for the construction of multi-Hamiltonian bilocal for-
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malism of integrable systems in ¢21)-dimensions.

The basic idea of the operand approach is the assumption that the elersatisfies the
condition:u=tie MC C™)(Zx (RI277); B) with B being some associative algebra, for instance,
the algebra of pseudodifferential operators. Thus, we pass from field variables to operator vari-
ables. All considerations for the (11)-dimensional case can be extended over the operator level

with the only modification related to noncommutativity @felements. AsM is some operator
manifold, we produce bi-Hamiltonian operator vector fields with two Poisson opeftapdrators
acting in the space of operators

To compare the results with the central extension approach let us consider the following case:

L= 07, 7={€ or 3, G=u; i#0, Go=Up—dy, (105

<o

where the operatod, is such that agz Dy, so we havd:=L—<9y. On the operator-field Lie
algebrag we define an invariant nondegenerate scalar product

(é,E))@=(B,é)=Tr(é-B)=jwfzwép(éﬁ)dx dy, abeg, (106
- Jo
where 9(a-b-&):=tr(a-b-¢), and D(a-b-&)=Sp(e-a-b)=5p(b-¢-a) for anya,b,eg. The

bi-Hamiltonian formalism orM produces, of course, hierarchies of commuting operator vector
fields K[ O], i.e., the vector fields which are polynomials dp operator

K[0]= 220 Ki[uld,. (107)

What we have to do, is to find through appropriate linear combinatigaee vector fields, i.e.,
“physical” objects.

Here we show how to calculate gradients of operator Hamiltonians and commutator of two
vector operator fields in the PDO case. Let

N +wA + o
H[0]=J h[ﬁ]dx=J’ (02— (0y)?)dx (108
and take a realization of the fieldin terms ofd, in the form

0=u+d,, (109

where now
" +oo (27
H[u,ay]=f j ((u+dy)*=(uy?)dx dy
— 0

4o (27
=f7 jo (U2 uy+2udy, + 5 — (uy)?)dx dy

+oo (27
f J 2u dx dy] dy
— % 0

+o (27
+U f 1dx dy]aﬁ. (110
— % 0

The gradient oH[u,d,] is given by

+oe (27
=Lw jo (u?+uy—(uy)?)dx dy+
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SH[u,d,1=(Vh[u,d,],6u), (112
VH[U,dy]=2u+ 2uyy+ 23y, (112

where(.,.) is a dual map oM.
Let us take two vector operator fields,

Kif0]=0, K [0]=00, (113
which are presented using the realizati@9) in the form
Ki[0]=u+a,, Ky[O]=(U+dy)uy=UU,+ U,y +U,dy
and their commutator
[Ka[a],Ro[0]]=Ki[a][Ko[ 011 - K[ a][R,[a]], (114
where “prim” means a Frechet derivative which is calculated in the following way:

. . . . dK[u+eV] .
K'[a][VJ=(Ei>o K{[u]a'y)[VJ=Ei>o K{TullV1d,= =0 Iimﬁo%ay-

Calculating the commutatdi14) we get

[Ka[G], Kol 01]=1-[Uty+ Uy +Uyd, ]
—(uy+uD,+D,Dy)[u+dy]+D,[u+dy]dy,
= —UUy— Uyy— Uydy . (115

In a similar way one can perform these calculations for the shift operator algebra just changing the
integral overx by the infinite summation ovenr.

Theorem 3 (Ref. 41): Let #, and 6, be two compatible Poisson operands such thaiis
f-type (i.e, 9, free) andd,= 6— eR;, 0,=6— eblR[Jy, where R, stands for the right multiplica-
tion by g, 0,0 are f-type operators an@=const.Let Vhy=consts ker®,, then

n
~ n\ . A A
Kn:=elokzo € k)\lf”kngVhO:elanVho, (116

whereW =97 19,=¥ - €R,, is a recursion operand for covector fields on, Mre f-type vector

fields
Proof: From the property of binomial coefficients

)+

n+1
k

Kk

n
k—1) (417

it is easy to verify that
n

R n\ .
Kns1= 010 >, fk(k)‘PnKHRg Vhg
k=0 y

n
A n\ .
+ 0102 Ek+1( k)q,nkR|;+1VhO
k=0 y
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= 01°(VQn+€QnR; ) Vho=012(WQ,Vho+ e[ Qn,R; 1Vho). (118

If ¥ andQtho aref-type, ther[(AQn ,Rg—,y]Vho andK,,,, aref-type too, and henck,(Vhg) are
f-type vector fields.
Lemma 1: If basic operator vector fieldeVhydl commute

[022Vhodls, 820 Vhod,]=0 (119
and leave the recursion operand invariant with respect to a Lie derivafive

Lvnyk®=0, (120

whereCi>=f92f91‘1=<I>—eR0y, then K, constitute a commuting hierarchy of Hamiltonian vector
fields

There are two special cases of the general forniil):

Lemma 2: Take the assumptions from Theorem 3

(i) If VhooXeker 6, k=0,1,2,. .., thert®
n
Kn==k20 ek(E)ﬁD”kO@thoﬂ§. (121
(ii) If Vhoeker 81,8, then 8,2Vhoay=®6,°Vhyak and®**
n
anzk; EK(E)&”—koélvrmoa;. (122

The formula(121) was derived by Athorne and Dorfmafin their article they applied the
operand formalism for the construction of the KP hierarchy.

Lemma 3: If L=L— g, then

(i) Byisof f type B
iy and@,=6- Rayﬁ?l, whered is of f-type

Proof of this lemma follows immediately from the fact that; alf-type operator and
adgcvf-type —ZR[,y. Notice thatd, operand when applied to thietype covectorgi.e., when

reduce toM C M), is equal tof; constructed via the central extension.
Let us consider the operand formalism for the Lie algebra of shift operators and for the PDO
Lie algebra.

A. Lie algebra of shift operators with operator-valued fields
The Lax operator for operator valued variables have the following form:
k=0:L=EM 40, 1 EMT M- +0,E% —n<a<0, acZ (123
As a consequence, frorfl06) and (19), vector fieldsL,; and gradientsVH are conveniently

parametrized by

. . SH
LsZ(ui)ts', VH=2 £ (124)



244 J. Math. Phys., Vol. 42, No. 1, January 2001 M. Btaszak and A. Szum

where SH/u; is the variational derivative of an operator-valued functidﬁ@h,ay]. The linear
and quadratic Poisson tensors are

Li=01(0)eVA=—ad (VH)=o+ (ad VH)-,, (129
Li=0,(L)°VA=— tad(ad VA)_o+ tad (ad VA)-,
+ 3aq Iy o(ad VH)o, (126
where
,,,=E""*+1)(E"*—1)"1 (127
The ®,(L) for commuting fields, derived in Ref. 7, is just tk&6) one, where now
A1=P=1—Po— 11 ,Po,
A=P=1—Pot+ 1,1 4Po,
(128
S=Py+11,,;,Po,
S*=Py—1II,. ,Po.

ExamplesHere, with the help of the operand formalism, we reconstruct the results of central
extension approach applied to the algebra of shift operators.

(1) The case of &1, a=0:

The Lax operator reads

L=&+u—ady. (129
For this Lax operator, usin¢l24), we get the following gradient:

_—  SH
v

Substituting this Lax operator and gradient itt25), (126), we derive the first Poisson
operand

0,=—ad,+Dy, (131
and the second Poisson operand
0,=— 3ad/ad,+ jad;Dy+ $Dyad,— D7+ }ad,H ad,
— 3D, /Had,— 3ad, HD,+ sHD;+ Ry, *(ad,~Dy)R; . (132
The recursion operand is given by
&= jad; — 3Dy~ 3ad, "+ HD,~ R, , (133

deduced for the first time by Morosi and Tortlwia a completely different approach. Taking
Vho=1eker 8;, 6, and applying the reduced formu(@22) we get the hierarchy

u(n)tlz uy1
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u(n)y,=2uuy+Huyy,

— 1 2 3 3 3972
u(n),= zUyyy+ 3uuy+ H(UUy)y+ 3 (UHUy)y+ 7H “Uyyy,

whereH=(E+1)/(E—1).
(2) The lattice-field Toda (Ref. 41):=n2, a=— 1.
The Lax operator has the form
L=&+p—dy+vE L.
For this Lax operator, usin¢l24), we get the following gradient
—~ SA SH

VH=5—p+5E.

245

(134

(135

(136)

Substituting this Lax operator and gradient ifi1®5), (126), we derive the first Poisson operand

(0 R,—vE™!
|ER,—v —(ad,—D,)

and the second Poisson operand

01

0,=0-R, b1,
where
611=(RE—vE HE-1)"YER,—v),
61,=(R,—vE ) (E—-1) YER,—p+ D,)+R, ,
021=(RyE—p+Dy)(E-1) H(ER,~v),
6,,=ER,—vE '~ (R,E-p+D,)(E-1) *ad,—D,).

The recursion operand is given by

where

©y;=[R,E—vE J[E'~1] ad,~DJ[R,~vE '] *
+[vE 1-R,J[E}~ 1] HE'R,~ p+D,J[vE *~R,]"*
-R, [vET'-R,]7Y,

®,=[R,E'-vE Y[E}-1]" 1,

®5=[vE 1-ER,JWE -R,] %,

(137

(138

(139



246 J. Math. Phys., Vol. 42, No. 1, January 2001 M. Btaszak and A. Szum

®,,=[R,E'~p+D,J[E'-1]*
and! is a unit matrix. Taking

€ ker’él,

0
Vhoz(l

the general formul&l116) gives the hierarchy

(v(n)) _( v(n)[p(n)—p(n—l)])
p(n/ - lo(n+1)=v(n)+p(n)y/’

v(n),=v(N[p*(n)—p*(n—1)+v(n+1)—v(n=1)+p(n),+p(n—1),]

p(N),=v(n+1L)[p(n+1)+p(n)]-v(n[p(n—=1)+p(n)]+v(n),

+v(n+1)y+Hp(n)yy+2p(n)p(n)y, (140
(3) The case of &2, a=0:
The Lax operator has the form
L=&2+u+w—ad,. (141
For this Lax operator, usingl24), we get the following gradient:
—— SH  sH
-1 — (142

V H= g E + b\N .
Substituting this Lax operator and gradient ifi®5), (126), we derive the first Poisson operand

. [—(ad,—Dy) 0
0= 0 ' E-E!) (143

and the second Poissson operand

~ 1 -
0225 0— Rayal, (144)

where
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611=(ad,—D,)11(ad,~D,) —ad2-y,)~Dj+2wWD,,
6,,=(ad,—D,)((MT—-1)u—(M+1)E"'R),
0= (uE(TI—1)—R,(I1+1))(ad,—D,),

6,,=2(ER,—WE 1)+ 2D, E"*+uE(II-1)u+Ry(M+1)E 'R,
—ullR,— R, ITu.

The recursion operand is given by
~ (1)11 CI)12

=Ry (145
(I)Zl q)22

where
®y;=ad, - Dy—(ad,—DyII,
®1,=(ad,—Dy)((II-1u—(I+1)E"'RY(E-E" 1)1,
®,,=R,(IT+1)—uE(IT-1),
P ,,={2(ER,~WE 1) +2D,E "'+ uE(II-1)u
+R(I+1)E"R,—ullR,— R ITu} X (E—E 1)1

andII=II,=(E2+1)/(E>—1). TakingVho=(?) e kerd,, the general formul§116) gives the
hierarchy

( u(n)) :(u(n)Hlu(n)—w(n+ 1)+w(n)
t

w(n) —(E+1)"tu(n)y :
(146
(4) The case of #3,a0=—1.
The Lax operator is of the form
L=&2+pEtv—dgy+us L. (147
For this Lax operator, usin¢l24), we get the following gradient:
ﬁ—g*15H+5H +g5':| 148
B Sp v du” (148

Substituting this Lax operator and gradient intt25), (126), we derive the first Poisson
operand

0 R,—uE™! 0
6,=| ER,—u —ad,+D, 0 (149
0 0 E-E !

and the second Poisson operand is given by
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011 01, 613
0,=| 01 02 0 _R{?yblv (150
031 O3 033
where
01,=R,ER,—UE tu+R,II,[ER,~u]+ull,[E"lu—R,],
61,=(v—Dy)R,+R,R,—UE *(ad’ —D,)
+(UE71_RU)H2(aq;_Dy)+Ruy1
615=pR,—UE X(II,+1)R,+uE Y(I1,—1)p
+R,E™HII,+ 1)R,— R, p,
3= —uR,—(v—Dy)u+(ad —D,)ER,

+(ad,~Dy)Tl,(u~ER,)+ER, ,

6,,=2pER,—2uE 'R+ (ad,— D,)II,(ad,— D)
—ad2+ad, +2vDy— D2+ 2R, ,

6,5=2ER,+pR,—(v—D,)p—2uE 2—(ad,—D,)E 'R,
+(ad,—Dy)I,(p—E~'Ry),

3= —UR,+ pE(ER,— U) + R,ER,+R,IT,(ER,— u) + pII,E(u—ER,),

03,=2E?R,— 2uE~'-pE(ad, — D,)—(v—Dy)R,+RyR,
+(PE—Rp)Ix(ad, — Dy)—pr,

33=2ER,—2(v—Dy)E "1~ pEp+R,E 'R, +pll,(Ep—R,)
+RyIL(E7'R,—p).

0
Vho=| 1| ekerd,

0

Taking

and applying the general formu({a16) we get the first hierarchy

u(n) u(n)[v(n)—v(n—1)]
v(n) | =| p(nu(n+1)=p(n=1)u(n)+v(n)y |,
P/ u(n+2)—u(n)+p(n),

(152

Taking
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0
Vho=| O | eker®,,

1

and applying the formul&116) we get the second hierarchy

u(n) u(n)H *p(n—-1)
v(n) =(u(n+1)—u(n)+(E+1)‘1|0(n>y , (152
p(n) t v(n+1)—v(n)—p(n)H *p(n)

B. PDO Lie algebra with operator valued fields

Lax operators for operator valued variables have the following form:
k=0:|:=&)':l+ﬂN,2&§‘72+--- +01(9i+00, (153)
k=1:L=0y+0y_ 10N 24 -+ +00+a, t0_. (154

As a consequence, frorfl06) and (23), vector fieldsIA_t and gradientﬁﬁ are conveniently
parametrized by

. o~ oA
L=20 (@), VH=2 g7 5 (155
i i

where5I3|/5ui is the variational derivative of an operator-valued functidﬁau,ay]. The linear
Poisson tensors are

L,=0,(0)VA=—ad (VH)— +(adVH)-_,, k=0,1. (156)
and quadratic Poisson tensors take the form
k=0:L,=0,(L)VA=(LVH)-oL —L(VAL)—,

+$[D;1res{[ﬁ,t]>i], (157

k=1:0,=0,(0)VA=(LVA)—,L —L(VAL)—o+L(LVH),
— o req[VH, L)L +[Dg treq[VH,L]),L]. (159

Both quadratic Poisson tensors for commuting fields were derived in Ref. 36 and are the special
cases 0f36), where fork=0,

(159
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1 -1
S*:_NDX P,l,

and fork=1,
A=P_,—Po+d,'P_1—P__,—2D,'P_,,
Ap=P_q—P_o+2D,'P 4,
(160
S=-20'P_,+2D'P_,,
S*=—2P;—2D,'P_;.

ExamplesHere, with the help of the operand formalism, we reconstruct the results of central
extension approach applied to the PDO algebra.
(1) The KP equation: k0, N=2.
The Lax operator is given by
L=d2+u—d,. (161)

For this Lax operator we get the following gradient, us{i§5),

ﬁ:a;15—u. (162)

Substituting this Lax operator and gradient iii&6), (157) we get® the first
6,=2D,, (163
and the second
,=3(D3+D,ad] +ad] D,—2D,D,+ad, D, ' ad,
—D, 'Dyad,—ad,D; 'Dy+D; D)) —R; b1, (164
Poisson operands and recursion operand
d=0,6,'=1(D2+D,ad; D, '+ad/ —2D,+ad, D, *ad, D, *
—D,'Dyad,D, '~ad, D, *D,+D, *Dj)~R;. (165
TakingVhg=1¢€ ker®,, and applying formulg121) we get the KP hierarchy
Up, = Uy,
Ug, = Ugy T+ 6UU, + 3D, 'uyy, (166)
Ug, = Usy + 10U Ugy + 20U, Uy 300U, + 10U+ 10u,D; 2uyy
+D, (5D, 2Ugy + + 30U+ 30Uy, + 20U, D, tu, +20u,D ) tuyy), ..
The central extension approach gives us additional equations for this hie(&®hy.e.,

ut2: Uy,

(167)
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Ug, = Uyyy+ 4Uly+2U,D5 fuy+Dy Pugy,

These equations are purely {2)-dimensional, because they reduce to zero by the dimension
reduction from (2+1) to (1+1).

(2) The(2+1)-Boussinesq equation:=0, N= 3.

For the (2+1)-Boussinesqg equation the Lax operator is

L=a3+udc+v—ay. (169

From Eq.(155 we get the following gradient
ﬁ—a*mhflm 169
X su X v (169

Substituting this Lax operator and gradient iiic6), (157) we get the first Poisson operand

1
. 1| —=D;tad,D;t Dyt

,1:_ 3 X X

L brt=3 . , (170)
D 0

X

. 0 3D,
61= 3D, ad,

and the second one

- R,;yﬁl, (177

. (511 01
02:

Oy 6y

where
60,,=2D3+D,u+R,D,—ad,+D,+3ad, D, ad,,
6,,= —Dj—DZR,+vD,+D,ad —2D,D,
+5(ad,D, *ad,+ad,Di+ad,R,—~ad, D, ‘D),
0=Dj+uDZ+D,R,+ad D,—D,D,
+3(D%ad,+uad,—D,'D,ad,+ad,D; " ad,),
0= 5(DZR,—vD2—D:—DJR,—uD3—uD,R,+DyR,+UR,~vR,)
+3(Div—R,D;+D’Dy+uv—uD,—R,R,
+ad, D, *ad,—ad, D, 'D,~D, 'Dyad,+D, 'DJ).
Taking
Vh0=((1)) e kerd;,

and applying formuld116) we get the first hierarchy of vector fields

o).~
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Ut3=203x+4(uv)x—U4x—(U2)2X—2UXy+ 4vy, (172
Vi, = Uayt 2Uv g+ 2(0%) 3+ 20y 2Uxv— 5 (Usx+ 3UUz,+ BUyUy

2 4n—1 2
+2u ux)+ §Dx Uoy— 3Uyox,

Taking

0 -
Vho(l S kerHl,

and applying formuld116) we get the first equation from the second hierarchy

U2X_2UX
(u) =|2 (173
v/, §(u3x+uux—uy)—vXX

(3) The case: k0, N=4.
The Lax operator has the form

L=dg+udi+vac+w—ay.

(174
For this Lax operator we get froifi55 the following gradient:
Frizg oot 200 aof 17
X su X su T sw (a7

Substituting the Lax operator and the gradientli66), (157) we get the first Poisson operand and
its inverse

0 0 4D,
9,=| o 4D, 2D} +ad, , (176
4D, —2D2+ad, 2D3+uD,+D,R,+ad,
. 0, 4D Y(—2D%+ad,)D,! —16D,*
b;lz—a 4D, *(2D2+ad,)D, * —16D,* 0 , Q77
—16D; 1t 0 0
where
2 -1 3 -1 -1 2 -1 2 -1
9,,=4D, (2D +uD,+D,R,+ad,)D, *—D, *(—2D2+ad,)D, *(2D2+ad,)D,
and the second Poisson operand
011 012 013
0,=| 01 02 0 _R(?yblv (178

031 0z Oa3
where

01,=5D3—ad,+ %(ad, D, ' ad,+ 6D+ 6R,Dy—2uD,— 2D,R,),
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61,=vD,—ad,+D,—5Dj+ad,D— 2D2R,
+ %(ad,D, *ad,+2 ad,R,+2D,R,+6D,v),
013=wD,+ 3(ad, Dy * ad,—ad, D, 'D,~ad, D{—ad, D,R,
+6D,ad} +ad,R,—6D,D,+6D;+6D;R,~6D3R,),
0,,=D4R,—ad,+D,+5D3+ D2 ad,+2uD?
+ 3(ad, D, 'ad,+2uad,+6R,D,+2vD,),
0,,=2D,R,+2wD,—2D,D,—6D3—R,D2+ D% —2D}R,

—2uD3—uD,R,+ i(ad, D, *ad,+2uad —2ad R,),

0,3=2D2R,—wD2—wR,+D,R,— 2D3R,+2DjR,+2D?

2 1 -1 . -1~ _ 3 4 2
+D;w+ 7(ad, D, ~ad,—ad, D, "Dy—ad, D;+2uD;+2uD;R,
—ad, DyR,—2uD,R,+2uad, —2uD,+ad,R,),

03,=D,R,+ i(ad, Dy ' ad,— Dy 'D, ad,+D$ ad,+6D5+6 ad), Dy
—6D,D,, uD,ad,+6uD}+6vD;+v ad,),
3,=DZR,—2D5—2uD}—2vD3 - 2wD2+2D2D,+uR,~ R, D2
+ %(ad, Dy " ad,—D; 'D, ad,+ D} ad, — 2D{R,— 2uD:R,
+uDyad,—2vDR,—2 aq, R,+2D,R,+v ad,),
035=(ad, Dy 'ad,— D, 'Dyad,—ad, D, 'D,+D, 'D7+R,D}
+Djw-D3D,+R,D,R,+uD,w—uD,D,+3D3R,+3wD}
—-3D3$D,+3D3R,+3uD;+3D,—3DyR,+3vDy+3uD;R,
—3uD{R,+3vD;R,+3uD,R,+3wD,R,— 3D,D,R,— 3vD,R,
+vw—vD,—R,R,+3vR,—3wWR,+3D,R,).
Taking

1
Vho=| O | ekerd,
0

and applying formula116) we get the first hierarchy of commuting vector fields

253
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Up, = 2Usx— 200 45+ 40W3y, + 40(uw),— 40Uy, v — 20UD 4
+20(v5) 2 — 45U,0 x— 10U Uy — 1502U, + 32Uy, — 400,
vy, = 10Ugy— 2805+ 40W 4+ 40(0 W)y — 40UD o+ A0 UW, )
— 100U gy~ 110Uy, ¢ +5(U?) 45— 15(U%0 ) — 200y
— 40w, + 30Uy, + 10Uy , (179
Wy, = Slzx— 120 g+ 12Wgy+ 20(Wy ) 2+ 200 Wy + 200 Wy
+ 20U Wyt 120, W+ BU U5+ 5(UU) 4y — LO(UD ) 4y
+ 502w, — 10U(UD ) 35+ 50 (UUL) x— 100 (U ) 5+ SU(U U)o

+ 22U Wy — 20Wyy + 15Uz — 100+ 10D MUy + 15Uy + 5Uuy — 10uvy

Taking

0
Vh(): 1 Ekerbl
0

and applying formuld116) we get the firts equation of the second hierarchy

u —2uxx+ ZUX

v| = 2W, + vy — 2Uz,— Uy , (180
1

w t Wy~ 5 (Uaxt+ Ulyytouy+ uy)

(4) The case: k1, N=0.
The Lax operator is of the form

L=u+a, 'w—a,. (181
For this Lax operator we get froif155) the following gradient:

—~ 01 6H
VH=20, m'f’&x S0 (182

Substituting the Lax operator and the gradien{166), (158 we get the first Poisson operand

blz( 0 an—Dy)’

ad,~ D, ad, (183
and the second Poisson operand
. [ 61 6 .
92:(_11 Bl _R, b, (184
b1 b2 g

where
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6,,=(ad,—D,)Dy *(ad,—D,),
61,=(u—D,)(ad,~D,)+(ad,—D,)Dy *ad,,
0= (ad,~Dy)R,+ad, D, *(ad,~ D)+ Ry,

=w(u—D,)—R,R,+ad,D; ' ad,.
The recursion operand is given by

-D -D,)D?
(i):(u y (ad,—Dy) x)

—R, I 18
w  Ryfad,Dt) Y (189

Taking

0 A a
Vho=(1 ekerf,,0,

and applying formuld122) we get the hierarchy

), (o)

(u) _(uzy—2uuy+2DX1w2y)
w/, — Wy, —2(Wu)y ’

2
(186
-1 -1 -1
U, = 5 (U?) 2y UPUy— 5Uzy+UD; 'Wpy+ Dy H(uw) oy +uyDy twy,

Wy, = —2uwuy—u2wy—uwzy—uywy— §W3y+WD;1W2y+WyD;lWy. Cee

Interestingly, forN=0 the central extension approach gives another hierarchy of commuting

vector fields, i.e.,
uj  [uy
w/ o \wy)’
t

Uy + 2Wy — 2uXD;1ux)
— Wy 2(WDy tuy)y [

w),-

2

(187

Uy, = Usx— 3(WD, *uy) = 3(UyDy Tuy)— 3w, Dy tuy

—3u,D, 'wy+6u,D; tu,D, tuy,

Wi, =W, + 3(W, Dy Uy ) = B(WDy, "Wy, + 6(WDy U, Dy tuy)y

We can transform this hierarchy to tli£86) one through the following transformatiob, tu,
— U, W—W, X<y,

(5) The case: k1, N=2.
The Lax operator takes the form
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L= 5+ udx+v—ay+a, 'w. (189
For this Lax operator we get froifi55 the following gradient:

ﬁ—a*25|:|+<9*15ﬂ+5ﬂ 189
X su Y v sw (189
Substituting the Lax operator and the gradientlif6), (158 we get the first Poisson operand and
its inverse

0 0 2D, +adq,
B, = 0 2D,+ad, Di-Dy+uD,+ad, |, (190
2D,+ad, —D%-D,+D,R,+ad, ad,
01, 01, (2Dy+ad,) "t
o, t= 0,y (2D,+ad,) "t 0 , (192)
(2Dy+ad,) ! 0 0

where
61,= — (2D +ad,) " *ad,(2D,+ad,)
+(2Dy+ad,) " *(—D{-Dy+D,R,+ad,)(2D,+ad,) *
X (DZ—Dy+uD,+ad,)(2D,+ad,) " *,
01,= — (2D,+ad,)"{(—D2—D,+D,R,+ad,)(2D,+ad,) "},
0,1= — (2Dy+ad,) " (DZ—Dy+uD,+ad,)(2D,+ad,) .
and the second Poisson operand

011 Oy O3
0= 02 05 0 _Rﬁyblv (192

031 03 O
where
01,=6D,+5ad,+ad,D, *ad,,
6,,=2D, ad} +2 ad +ad2+ad, D " ad,— 2D,—ad, D, 'D,,
015=2D3+ad, D2+ u ad, Dy+2D,uD,+ 2D, +ad, v + 2 ad,
+a¢D;1an—2DXDy—anDy+Ruy,
0=2ad D,+2ad—2D,+ad.+ad, Dy *ad,—D,D; " ad,,

6,,=2D3+ad,D2+D2ad,+vD,—D,D,+D,R,—ad,+uD,u
+R,D,R,+v ad; —Dyad; +uv—uD,~R,R,~ad; R,
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+(aq;_Dy)Dx (aq;_Dy)+Ruy,

6,3=Dj+uD2+D2uD,+ D2 —D2D,+ad, DZ—D,DZ+R,D,
+Dy ad, +uDuDy+vuD,—DyuDy+uD,w —uD,Dy—UuR,Dy

+(v— Dy)(aq;_ Dy)"'UW_ RuRW+aCL D;ladN_ DYD;l ad"”

03;=2D3+D2?ad,— D, ad, R,— 2D,R,Dy+2R,D,+R, ad,
+2ad,+ad, D, ad,,

3= —Dj+D3R,+D,R,DZ—R,D2+DZad,— DD, +D,w
+ad, D,—D,R,DR,+D,R,R,+R,D,R,—D,vR,
+D,D,R,+ad, R,—D,R,+wu—R,R,+ad, Dy ' ad,
—ad, Dy 'Dy— DRy, + R,

33=wD2—DZR,,+wuDy+D,R,R,+Wv—wDy—R,R,+ad, D * ad, .

Taking

0
Vhoz 0 S ker’él
1

and applying formuld116) we get the hierarchy

u Uy
1% =| Ux |,
w t Wy
u 2vy+Uy
v | =| 2Wyt vyt Uoy |,
w — Wyt (WU),

t
Ug, = Usu— 5 UL+ 6(Ub )5+ B0+ 12y + 6y + 3D, Uy +3u,D Huy,
— 3 3 3 3 3 3,,2 3 -1
Utg—vxxx+ S(WU)y+ FUDy T SUW+ FUwt S04+ gUDLF FuDy Uy,

3
— 3 3 3 3 2 3 -1
Wt3_Wxxx_ E(Wu)xx+ Z(Wux)x+ E(Wv)x+ §(u W)x+ ZWUy+ ZWXDX Uy,

The reductiorv =w=0 gives the mKP equation

Ug, = U~ 3UPUH 3Dy 'uyy+3u,Dy tuy .

257

(193

(194
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V. CONCLUSIONS

In this paper we illustrated two different methods for the construction of a bi-Hamiltonian
representation of the lattice-field and field dynamical system if IP-dimension. The first
method is based on the central extension approach and allows a construction of a hierarchy of
commuting vector fields and a Hamiltonian representation of dynamical system. The second
method is the so-called operand approach. This method allows a construction of a bi-Hamiltonian
representation for dynamical systems in{(2)-dimension. This bi-Hamiltonian representation is
related to the so-called operand Poisson tensors. Inverting the first Poisson tensor we can construct
a recursion operand and applying Theorem 3 and the Lemmas 1,2 to produce a whole hierarchy of
commuting vector fields. The general idea was to extend the known methods for the construction
integrable nonlinear Hamiltonian dynamical systems, which are based @ithatrix formalism,
and to derive new dynamical systems in{2)-dimensions. We used the central extension pro-
cedure for the construction of (21)-dimensional lattice-field and field dynamical systems and
their Hamiltonian formulation and derived hierarchies of vector fields of the
(2+1)—Benjamin—0Ono, (21)-Toda and some new equations. Thet()-dimensional sys-
tems which do not survive a reduction onto41)-dimensional space are also derived. We
developed operand formalism and extended theorems proposed by Magri, Morosi, ané®tbndo
and by Athorne, Dorfman, and Fok&st>®unified them into one and also derived, using the
proposed theorem, a bi-Hamiltonian formulation of well-known and some new dynamical systems
of lattice-field and field types in (2 1)-dimensions. The operand formalism in the majority of the
cases considered gives the same result as central extension approach, but we still do not have a
general formula for the construction of hierarchies of commuting vector fields and each time we
have to find a “right” starting symmetry. This problem is still open.
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We study a family of fermionic extensions of the Camassa—Holm equation. Within
this family we identify three interesting classéa) equations, which are inherently
Hamiltonian, describing geodesic flow with respect td-Hrmetric on the group of
superconformal transformations in two dimensigi$,equations which are Hamil-
tonian with respect to a different Hamiltonian structure dodsupersymmetric
equations. Classds) and (b) have no intersection, but the intersection of classes
(a) and(c) gives a system with interesting integrability properties. We demonstrate
the Painleveproperty for some simple but nontrivial reductions of this system, and
also discuss peakon-type solutions. 2001 American Institute of Physics.
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[. INTRODUCTION

Recently there has been substantial interest in the Camassa-(Bblnequation*?
Ui — PUyy= KUy — 3UUy+ 1(UUyyy 2Uy Uy ) (1)

This equation has been proposed as a model for shallow water waves. It is believed to be inte-
grable, having a bi-Hamiltonian structure, as was first observed by Fokas and Fuch&dt2iner
years prior to Camassa’s and Holm’s work. Due to the nonlinear dispersion tery,, it
exhibits more general wave phenomena than other integrable water wave equations such as KdV.
In particular, whenk=0 it admits a class of nonanalytic weak solutions knowrpaakons as
well as finite time blow-up of classical solutiohs.

Geometrically, the relationship of CH to KdV is rather deeper: Both are regularizations of the
Euler equation for a one dimensional compressible fiMdnge or inviscid Burgers equatign

U= —3uuy. 2

A solution to this equation describes a geodesic on the group of diffeomorphisms of the circle
Diff( S')* with respect to a right-invariant metric induced by lahnorm, fu? dx, on the associ-
ated Lie algebra. If the group is centrally extended to the Bott—Virasoro group, the KdV equation
arisess~® On the other hand, if the metric is changed to one induced bytamorm, [(u?
+wvu?)dx, the CH equation arisés'! Both these “deformations” have a regularizing effect on
solutions of(2), which exhibit discontinuous shocks.

Thus KdV and CH arise in a unified geometric setting; both are geodesic flows which are
integrable systemgHere, and henceforth in this paper, when we refer to a “geodesic flow” we

@Electronic mail: devchand@mpim-bonn.mpg.de
YElectronic mail: schiff@math.biu.ac.il

0022-2488/2001/42(1)/260/14/$18.00 260 © 2001 American Institute of Physics
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mean the evolutionary PDE which can be formally associated—in the manner we will see in Sec.
Il—with any inner product on the Lie algebra of a diffeomorphism group, and which, at least in
the cases mentioned above, is known to describe geodesic flow, in the usual sense of the phrase,
with respect to the correpsonding right-invariant metric on the group. In the case of a general inner
product, the existence of the corresponding geodesic flow, in the usual sense of the phrase, is
highly nontrivial) The following important question arises: What features of the underlying ge-
ometry give rise to integrability? In general, geodesic flowsradntegrable: the Euler equation
for fluid flow in more than one spatial dimension is an exantpteleed, for the latter, Arnold has
suggested a relationship between negative sectional curvatures and nonpredictability of the flow.
We feel that it ought to be possible to identify some other geometric property that “causes”
integrability. In a remarkable recent pagéirringer and Holm have shown that certain features
usually considered to be hallmarks of integrable systems, such as elastic scattering and asymptotic
sorting according to height, in fact, appear in geodesic flows on Siff(vith respect to a large
class of metrics. Thus, there may well be a hierarchy of geometric structures corresponding to
various degrees of integrability.

One further example of an integrable bi-Hamiltonian system arising as a geodesic flow has
been discussed by Ovsienko and Khesiising the superconformal group with &R type metric,
they obtained the so-called kuper-KdV system of Kupershhidihis is a fermionic extension of
KdV: it describes evolution of functions valued (e odd or even parts p& Grassmann algebra.
In fact, as we will see below, taking a genetal type metric on the superconformal group gives
rise to a one parameter family of fermionic extensions of KdV, which includes not only kuper-
KdV, but also the super-KdV system of Mathieu and Manin—R&8tiThe latter is integrable: it
has only a single Hamiltonian structure, but unlike kuper-KdV it is supersymmetric, a property
which is widely believed to contribute to integrability. It remains a mystery as to why, of the one
parameter family of geodesic flows associated witttype metrics on the superconformal group,
only two specific choices of the parameter give rise to integrable systems.

Our main purpose in this paper is to investigate geodesic flows obtainedfaype norms
on the superconformal group; more generally we consider the following family of fermionic
extensions of CH:

Up— VUyy= KUy KoUyyxt B1UUF BolyUyyt BaUUyxxt Y1880t Y26xExxxt Y36 Exxxxs

)

Et— mxxt= T1Ex T 028y €1UEF €U+ p1U& it polyEyxt paUsxéxt Palyyé-

Hereu(x,t) and &(x,t) are fields valued, respectively, in the even and odd parts of a Grassmann
algebra, an({V,/.L, K1,K2 iﬂl !BZ 1B3 »Y1:Y2:Y3:01,02,€1,€2,01,P2:P3 ,PA} are parameters' By
rescalingu andé¢ it is possible to seB; = —3 andy;=2 (assuming that they are nonzgrand we

shall do this throughout. In addition it is possible to eliminate up to two further parameters by
rescaling the coordinatest.

We derive three interesting classes of systems of the {8ynin Sec. Il, we consider geodesic
flows on the superconformal group with &t type metric; the resulting systems have a natural
Hamiltonian structure, or more precisely, since the fields are Grassmann algebra valued, a graded
Hamiltonian structure. In Sec. Il we identify a class of systems having a different Hamiltonian
structure. Unfortunately the latter has no intersection with the class of Sec. Il, so there does not
seem to be a bi-Hamiltonian fermionic extension of CH. In Sec. IV we consider systems of the
form (3) that are invariant under supersymmetry transformations betwesard £. This class has
nontrivial intersections with both the classes of Secs. Il and Ill. In particular there is a unique
supersymmetric geodesic flow which is a candidate for being a new integrable system. We call this
equationsuper-CH In Sec. V we show that two reductions of super-CH have the Paipeys
erty, which is positive evidence for integrability. In Sec. VI we look for peakon-type solutions of
super-CH; as for CH, multipeakon solutions arise from the solutions of a system of ODEs, but the
integrability of this unfortunately remains unclear.
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Super-CH is a supersymmetric geodesic flow whose bosonic part is integrable. While in this
paper we do not fully establish integrability of super-CH, we regard it as an interesting test case
to determine whether in general supersymmetric geodesic flows with integrable bosonic parts must
be integrable.

A trivial integrable CH system of the forr(8), which is not incorporated in the classes of
Secs. Il, lll, and IV, and which we shall not discuss further, is the odd linearization of the bosonic
CH system(1):

U;— PUyy= KUy — 3UUy+ V(U Uy y+ 2Uy Uy ),

(4)
E— V€= KEx— 3(EU)y+ v(EUyyxt Uyxxt 2(ExUy) ).

Replacingu by u+ «/3 and considering the limit— 0, k—2, with vk=3, yields the system

Up= —3UUy+ Uyyy,

)
&= —3(&U)x+ Exxx-

This trivial fermionic extension of KdV has appeared often in the literatsee, e.g., Ref. 14

Il. GEODESIC FLOWS ON THE SUPERCONFORMAL GROUP

An inner product- , -) on a Lie algebrg determines a righttor a left-) invariant metric on
the corresponding Lie group. The equation of geodesic motion @with respect to this metric
is determined as followsDefine a bilinear operatds: gx g—g by

([V.WL,U)=(W,B(U,V)), V Weg. (6)

Then geodesics are determined by solutions of the “geodesic flow,”
U,=B(U,U). (7)
In our caseg is the NSR superconformal algebra, consisting of triglgx), ¢(x),a), whereu is

a bosonic fieldg is a fermionic field anda is a constant. The Lie bracket is given by

1 1 1
[(u,p,a), (v,l//,b)]=(uvx—uxv+ S @Y U= U= @xv + 5 Uy,

J dx(cluxvxx+ CoUvyt+ Crpxifxt %@'ﬁ) , (8
wherec,,c, are constants. On this algebra, ldh type inner product is given by
((u,e,a), (v,l/f.b)>=f dx(uv + vUw+ @ dy i+ ape) +ab
=f dx(uAgv+ @A ) +ab, 9
where
Ag=1-wdy, Ar=a(dy = pdy), (10

andu,v,a are further constants, all assumed nonzéBee Ref. 5 for the definition of the natural
fermionic extension of the standakrd inner product, to which the above reduceg.it v=0. The
natural fermionic extension of the standafd inner product is constructed, as for pure bosonic
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systems, by taking the sum of theé inner product for the functions involved with the inner
product for the derivatives of the functions involve@/riting U= (u,¢,a) , V= (v,#,b), we find
B(U,V)=(Bg,B;,0), where

AoBo(U,V)=—(2v,Agu+v Aguy+ g‘/’xAl(P+ %lpAl‘Px)_ +a(C1Uyxx— C2Ux),

(17)
3 1 Cs
A4B4(U,V)=— 5Ux Arptv Ao+ E%”AOU +a| Cyihxx— ZW -
The geodesic flows are therefore conveniently written in the form
Aout:AoBo(U,U),
Appr=A1B1(U,U), (12
alzo.
Writing ¢=\&,, where\ is a constant satisfyiny?=4/3«, this yields the system
2u
Up— PUyy = KUy T KUy = 3UUyF 2(UUyyot 2UyUyy) + 286+ ?gxgxxw
(13

Kq K2 3
&~ Méxxtzﬂgxdl' ;gxxx_ Euxg_

1 3u v
1+ Z U+ mUéyuxt 7ux§xx+ Zuxxfx-

Here x4, k, are independent parameters determinedwy,c,. This is evidenyy a 5 parameter
class of systems of type).

Setting £ to zero in(13) yields the CH result of Refs. 9—11. If instead we chopse to
vanish, theH* norm becomes ah? norm; then choosing; to be zero and rescaling, to 1 we
obtain the following 1 parameter fermionic extension of KdV:

Up= Uyxx— 3UUy+ 2885k,
(14

1 3 1
gtzzgxxx_iuxg_ 1+Z Uéy -
Modulo rescalings, the super-KdV of Mathieu and Manin—Radul is obtained by takint, The

kuper-KdV system arises by taking= , the choice made in Ref. 5. Other values of the param-
eters give systems which are not believed to be integr@egle however Ref. 16

Ill. HAMILTONIAN EQUATIONS

Like KdV, CH has a bi-Hamiltonian structure, and this accounts for its integrability. We
might hope that for some choices of parameters the sy&8&nshould also have a bi-Hamiltonian
structure. One Hamiltonian structure follows automatically from the geometric origins of the
system Explicitly, introducing new variablesn=u— vu,, and 7= é— u&,,, (13) takes the form

oH,
(m‘) P om 15
nl =2\ em, | (15
on

where
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K2(73+ K1dy— dyM—mdy = dyn+ nd

P,= (16)

1 3
_&xn_in&x E

4 Kkpd? | — =—m
Kza ) a
and the Hamiltonian functional is given succinctly by #Hé inner product on the algebra,

H2:%<U ) U>: %J dX(U2+VU)2(+ %(§x§+ﬂgxx§x))- (17

This generalizes the so-calledecond Hamiltonian structureof KdV and its fermionic
extensions>'* Checking (15) is straightforward: the Euler—Lagrange derivatives
OH,I/6m, 6H, /67 are defined by

5H—fd M st 212 18
27 X 5m m 57] /am ( )

from which it follows immediately thatH,/dm=u and H,/5n = 3&,.
To investigate the possibility of systems amon@sd) having another Hamiltonian form, we
look at systems of the form

oHy
(mt) P om 19
7 - 5Hl 1 ( )
on
where
A (1—vd?) 0
Pr= €, (20
0 -5 (L= pud)
Here e, is a constant an@{, is a functional generalizing the Kdfirst Hamiltonian
1 Bs K K1 o1 o2
_ _ -3 _P3 o "2 .5 *1 5 Y1 et
H, J dx( 2u > uuy 5 uy + 5 uc+ o EEF . & x
+2uéé,+ (72— v3)Uééuxt YaUEExxx] - (21)

This is the most general functional of this type, up to rescalings @nd & Since Sm=(1
—vd?)éu, we have (t vd2)(6H,/ém)= (6H,/6u), and similarly (1 wd?)(SH,!67)
= (6H/56€). Thus Eqs(19) take the simple form

OH1
Ut = PUyxt= &x( Su = KUy F KoUyyy— 3UUyF B3(2UyUyy+ Ulyyy)

+28&t v2ExExxxt Y36 Exxxxs
(22

oH
& = 61(5_;) =018t 026t €2(UéE+2U€,) + €1(2y3— y2) Uik

3 1 1
+ E €1(2y3— y2)Uyéyxt E €1(4y3— ¥2)Usxéxt E €1Y3Uxxx-
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This is a 10 parameter class of systems of the f8mComparing with(13), we see that the only
bi-Hamiltonian systems occur whefu=v=83=17v,=7v3=0, e,1=— 3, o1=k;1, 0,=4K,},
which is equivalent tq13) with {u=v=0, a= 3}, i.e., the kuper-KdV system. Thus, no new
bi-Hamiltonian systems arise.

We note that the systen{&2) can be obtained from a Lagrangian. Introducing a poteiftial
defined byu=f,, they are Euler—Lagrange equations for the functional

,33

1
E:J’ dX(E(fX_foxx)ft+ (g ngx)gt 2

K2 K1 01
> f (Faxt fix——fi—e—&x
1
02
- E_lggxxx_ 2 F3E86x+ (v3— v2) Fxééux— vafx€éxxx] - (23

IV. SUPERSYMMETRIC EQUATIONS

Define a fermionic superfield (x, ) =sé+ du and superderivativ® = 9/ 90 + 949, , where
s is a nonzero parameter anfdis an odd coordinate. The most general superfield equation having
a component content of the for(8) is the 8 parameter system,

D®DD

2
(1—VD4)(I>t=K1D2<I)+K2D6(IJ—?CI)D3CI>+ 234 Bs

)DCIDDZCI>+

7’3

V3 V3~
- ?¢D7(I>+ B3+

)DZCDD5<I>+(,82 B3+ ) SODP,
(24)
where{v,s,k1,k2,B2,83, Y2, Y3} are parameters. The component equations are

Ug— VUyy = KUy T KoUyyx— 3UUyF BolyUyyt BaUUyyxt 2EExxT Y2ExExxT Y3EExxxs

(29
3uéyet

2
&= V&= K1€x Tt Koyxx™ ?Uxf‘f' 2 +:83)u§xxx

:8 :83 ) xgxx

+:83) xx‘fx 2 uxxxé

These systems are by construction invariant under the supersymmetry transformations,

Su=r1é,, O&= g; (26)

whereris an odd parameter. The super-KdV limit, namglyB,,83,v2,v3, 1} all zero, yields,
modulo rescalings, the one-parameter family of systems studied by Mafhieu.

By comparing(25) and(22) it is straightforward to extract systems which are both supersym-
metric and have Hamiltonian forrfl9), (20). Taking s>=2 in (25), {r=pu, o1=k1, 02=kKy,

e=—1}in (22), and{B,=2B3, B3=v>— 33} in both, we obtain the systems,
U= PUyyt= K1 Uy + Kol — UL+ (y2— % ¥3) (2UyUy Ulyy)
+28&0t Y28xExxxt Y36 Exxxxs
&= v&xt™ K1&xT Koy Ux§ = 2UE,+ (72— 27y3) Ui

+ %(72_273)ux§xx+ %(72_473)uxx§x_ %'ysuxxxg- (27)
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These may be expressed in superfield f@¢2#) with the above choice of parameters. The mani-
festly supersymmetric Hamiltonian form is given by

. SH, .
M=Pi 5t M=0—wD P, (28)
with
P1=D(1-vD%), (29)

~ K1 K2 l
lef dx dﬂ(;(bD(D—?DZCDD?’CD—ECD(D@)Z
1 3 2 1 214
+;173<I>(D ) +Z(72—273)(D<I>) D ® . (30

Since the KdV reduction of27) (with x;=y,= y3=0) is not believed to be integrable, we have
not explored this class of systems further.

In a similar fashion, we may look for choices of parameter sets for which the geodesic flows
of Sec. Il are also supersymmetric. Compar{ag) with (25), we see that the choidg.=v, «
=1, k;=0} in the former ands?=4%, B,=2v, Bs=v, v,=2v/3, y3=k,=0} in the latter, yields
the two-parameter system of supersymmetric geodesic flows:

2v
U= PUyy = KoUyxx— SUUy+ 2EE 0+ v (Ulgyy+ 2Uy Uy, ) + ?gxgxxx-
31
3 3 1 D
& v Ko™ E(Ug)x"— V| Uuxxt Euxgxx'l' Euxxfx .

We shall call this system, witlkk,=0 and v+ 0, the supersymmetric Camassdolm equation
(super-CH. The system(31) reduces to super-KdV, upon settingto zero, and to CH, upon
setting & to zero and translating.

Not surprisingly, the system81) arise as geodesic flows precisely when the mé&jion the
NSR superconformal algebra is supersymmetric. Then, the calculations of Sec. Il can be per-

formed using superfields. Specifically, writidg=u+ 3¢ and V=v + 9, the bracke(8) takes
the form

1
[(Ua), (VDb)]= (UDZV— VD2U+ EDL{DV,clf dx do DZZ/{D3V> ) (32
and the inner produd®) may be written as
((U,a), (v,b)>=f dx d3(UD ~V+vD2UD V) +ab. (33

The superspace bilinear operafdiis given byB((i4,a),(V,b))=(B,,0), whereB, satisfies

(1-vDHD 'By=c,;aD®V— $D?W(1—vD*D U/~ 1DWV(1—- vDHU—-V(1—- vD*)DU.
(34)

Writing cia= «x, andi/=D®, the geodesic flowslf; ,at)=l§((u,a),(u,a)) yield

(1— vD*H D= k,DP— 3(PD3DP+DPD?P)+ v (DPDOD + ID2ODd + :D3PD*D).
(39
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We thus recover the subsystem @4) having component conter{Bl). Equation(35) has a
superfield Hamiltonian formulation,

~ 57’:{2 4
M=P, 7, M=0—wD, (36)
with
Pp=k,D°~ :DMD—-D2M~MD?, 37
.1 1
H2=§<(D<p,o),(D<D,O))=§f dx d9®DM. (38)

V. PAINLEVE INTEGRABILITY OF SUPER-CH SYSTEMS

In this section we investigate, in more detail, the supersymmetric geodesi¢Flowvith »
=1 and K2:0,

mt:_zmux_umx+277§+%77x§x’ M=U~— Uy,

. . (39
Mm=— 3 MU= sM§—Uny,, 7p=E— &y

We shall consider the two simplest possible choices for the Grassmann algebra in which the fields
are valued, viz. algebras with one or two odd generators. Taking the algebra to be finite dimen-
sional is a very convenient tool for preliminary investigations of systems with Grassmann algebra-
valued fields. MantoH recently studied some simple supersymmetric classical mechanical sys-
tems in this way and he introduced the term “deconstruction” to denote a component expansion
in a Grassmann algebra basis. In Ref. 18 we investigate fermionic extensions of KdV in a similar
fashion.

A. First deconstruction of super-CH

We first consider the super-CH systéB9) with fields taking values in the simplest Grass-
mann algebra with basi{d,r}, whereris a single fermionic generator. In this case the fermionic
fields may be expressed &s-7¢,, »=1717,, where¢; and », are standardi.e., commuting,
c-numbej functions, as are andm in this simple case. Sincg=0, the fermionic bilinear terms
do not contribute and we are left with the system

mt:_zmux_umxv m:U—Uxx,
3 1 (40)
Nu=— 2 MUx— 2ME— Uik, 71 &1~ Eaxxe

Further analysis is simplified by changing coordinates as described in Ref. 19. Whitipg, the
first equation 0f(40) takes the fornp,=(—pu),, which suggests new coordinatgs,y,; defined
via

dyo=p dx—pudt dy;=dt, (41)
or dually, via

é‘_ J 19_ Jd J 42
x Paye Aoy PUayg 42

Implementing this coordinate change and eliminating the functiorend &¢;, the remaining
equations folp andgq= 7, are

pb"—p(PP"+p'p')+pp'?—2p%p’ ~p=0, “9
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3p’. . 3p (410’2 2p” 1). (15p’|'o 3p" p
g+ q _ ’

- gl )
pp’+2p'p’  4pp’? |
+3< D2 T -p )q:o_ (44)

Here the dot and prime denote differentiations with respegt tandy,, respectively. We note:
(a) thanks to supersymmet(6), if p is a solution of(43), thenq=p? is a solution of(44); and
(b) under the substitutiog=p®?%, (44) takes the substantially simpler form
12 "

(P 1 ) . p, 3

"+ ——s=—=|f—sr'"——r=0. 45
The system (43), (44) passes the WTC Painlese

Proof: Equation(43) is a rescaled version of the Associated Camassa—Holm equation of Ref.
19. The consideration of solutions with(yg,Y1) ~Po(Yo.Y1) ?(Yo.Y1)" near ¢(yq,y1) =0, for
somen#0, yieldsn=—2 orn=1 as the possible leading orders of Laurent series solutions. We
need to perform the WTC Painletest? for both these types of series. The first type, namely,
Laurent series solutions exhibiting double poles on the singular mani¢ig,y,) =0, have
already been considered in Ref. 21. These take the form
2¢'¢ ¢

where ¢,p»,p,4 are arbitrary functions of,,y,, and

1 125 1 427 12 P "'y2
i P et O B (920 b+ 4

ps=

—(¢' P — ' b — "'+ dd"P")). (47)

We have, at present, no explanation of the remarkable symmetry of these expressions under
interchange of the independent variables. The second type of solutions have a simple zero on the
singular manifold¢(yq,y1) =0. They take the form

p=ii+pz¢2+p3¢3+..., (48)

where ¢, p,,p; are arbitrary functions. The verification of the consistency of both these types of
expansions is straightforward. This completes the WTC test for(43).

It remains to look at Eq(44). Although linear ing, it is not automatically PainleveThe
movable poles and zeros mgive rise to movable poles in the coefficient functions of the linear
equation forq, and we need to examine the resulting singularitieg|.off p has a pole onp

=0, then neay=0 we havep~2¢a’'/$?, and Eq.(44) takes the form

eis'+ ﬁ+ ”+(4¢/2+ .+(11¢,¢
b T ...1q e .19 e

O

+...

1
'+ — | 1q=0.
é q ¢2))q
Thus the equation has a solution wij- ¢" if n(n—1)(n—2)+9n(n—1)+15n=0, giving n
=—4,—-2,0. It follows that in the case whemis given by the serie§46), no inconsistencies will
arise near the double poles pfif (44) has a series solution of the form

q”+ q!+

o d1  d2 O3
=t —st—st—+qut..., 49
q ¢4 ¢3 ¢2 ¢ q4 ( )
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with gq,0,,04 arbitrary. The consistency of such a solution can easilly be verified using a sym-
bolic manipulator. UsingnapLE we find that

g, =290 4'%

1 ¢/2 *
The explicit expression fog; is too lengthy to be given here.
Suppose now that has a zero op=0. Near thisp~ * ¢/ ¢’ and Eq.(44) has the structure
(34|, (34 (15¢'¢ ) (12¢'2¢

Tl | =t ———+...|q' —

(50

3¢/2
¢2

q'+ +...]+

+...)q=0.

Thus (44) has a solution withg~¢" if n(n—1)(n—2)— 3n(n—1)+ ¥n—12=0, giving n
= 2 2,4. Theappearance of a half-integer here is not considered a violation of the Paiaktve

(see, e.g., Ref. 32The half-integer value af gives rise to a series solution ¢f4), near a zero
of p, of the form

a=0od**+ a1+ q,0"%+ ..., (51)

with qq arbitrary, andy,,q5,... determined byyy [and the arbitrary functions arising in the series
(48) for p]. The two integer values of tell us that we need to check the consistency of solutions
of (44) taking the form

0=Qo¢p*+ Q1>+ Qup*+..., (52
with two arbitrary function®Q, andQ,. This is indeed consistent; usingraPLE we obtain

1

b2

(2¢'2Qo+2¢" Qo+ ¢’ pQu+46’ ¢’ Qo), (53

Q1=*2¢"Qops—
3

with the choice oft depending on the choice {@8). The general solution d44) near a zero of
p, with three arbitrary functions, is a linear combination of the seffd$ and (52). Thus the
system(43), (44) passes the WTC test. O

The WTC test is evidence for the complete integrability of the sy (44). This in turn
suggests that super-CH indeed has some integrable content.

B. Second deconstruction of super-CH

We now consider the syste(89) with fields taking values in a Grassmann algebra with two
anticommuting fermionic generators, , 7,. Expanding in the basi§l,r,,7,, 7,75},

U=Ugt+ 77Uy, =16+ 6o,

(59
M=My+ 77, My, 7=T171+ 7272,
where the functionsiy,u;,mg,mq,¢,,&,, 71,7, are all standard, we obtain the system
Mot = —2MgUox— UpMox,  Mo=Uo— Uoxx: (55
M= 3Uox?i— 2Molix—UoTix, Mm=&— &k, 1=12, (56)

My= — 2M1Ugy— 2MgU 1y — UgMyy — Ug Moy

+2(m1éy— m2€1) + 5 (maixax— Maxix),  Mp=Ugp—Usgyy. (57
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Supersymmetry(26) tells us that given a solutiony,my of (55), we can solve the remaining
equations by taking; = «;ug, ;= aimg (i=1,2), u; = Bug, andm,; = Bmy, , wherea,,a,,[ are
arbitrary constants.

We handle the systert65)—(57) following the procedure of the previous section. Writing
my=p? and changing coordinates ¥@,y;, the system can be written as

1\ p\’
up=|=|, up=p?— (—) : 58
0 (p) 0=pP°—p 0 (58
3nip 27, (37/ip 257i>' .
' —Z3, G=nmitpl = - 5|, i=12, 59
&i p4 p3 &=ni+p p3 p2 (59

8(m17m2— ﬁzﬂl))'
3p°

ml)' A(mymo— ném))'
— | =—(2up)’ + ’
( p ( lp) 3p3

. (60)
my=u;—p(pu;)’.

Applying the WTC Painlevéest to this is a mammoth task, so instead we consider the Galilean-
invariant reduction and apply the Painletest at this level. The Galilean-invariant reduction is
obtained, as usual, by restricting all functions to depend on the single varialylg— vy, alone.

Evidently the first equations of bot{68) and (60) can be integrated once immediately. Then
eliminatingug from (58), & from (59) andm, from (60), we obtain

p'\' p . cp 1
—| ===+ =-5, 61
(p v p p? (61)
., 9’ , (11p 5¢; 4 13p'?|  3p'(2p 3¢, 3 p?
T2 (Z__T T A R L
(62
" i '+ 2P 1) d +4( ; 1) (63)
Ur+ —uy+|{—— —=|u;= —3 - :
1 p 1 v pz 1= U p3 M2 7271

wherec,,d; are integration constants. The equation figz) may be integrated again after mul-
tiplying both sides byp'/p; this gives

2
p'?=1-2cip+cop®~ —p, (64)

wherec, is another integration constant. This equation is well known in KdV theory. Its general
solution can be written in terms of the Weierstrasfunction,

p(z)=—2vp(2)+ §Cov, (65)

where the periods qf are determined by the coefficierts,c,,v. Using(64), the coefficients in
(62) can be simplified. Further, we know from supersymmetry that this equation has a solution
7= p>. Substitutingz; =p?q; the equation becomes a second order equationfor

" 3p’ n 3p 3 C2
4t o *(‘z‘z—pﬁf

q/=0, i=1.2. (66)

Supersymmetry(26) allows a reduction of the order ¢63) as well. It implies thatu;=p’/p,
7;=p? is a solution. So, writingi;=rp’/p, ;= p2q; in (63) yields a first order equation far':
4p? 1\r

r”+( P

P / /
Czp_T_B)F=F(d1+4p(Q1Q2_Q2Q1))- 67)
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Multiplying by the integrating factop’?/p and integrating, we obtain

r’=% d1p+dz+4f (0102~ 020;)pp’ dz|, (68)
whered, is a further constant of integration.

Thus the Galilean-invariant reduction of the second deconstruction of super-CH takes the
form of the three equation®4), (66), (68), to which we now apply the Painléest. All substi-
tutions hitherto have been ones which do not interfere with the test. Equédomas movable
double poles and movable simple zeros. Near a double palg #te series solution contains only
even powers of{—z;),

54 4
—+ CZU - 1&:102

_ 2v Cov 1201—C§v ) A 69
p(Z)— mﬂ-?‘f‘l—zo(z ZO) + 3024 (Z ZO) +..., ( )
and near a simple zero a§,
1 , 1 ; 16 .
p(z)=t(z—zo)—§c1(z—zo) igcz(z—zo) ~ %4 ;+clc2 (z—2zp)*+.... (70)

At both the zeros and poles @f Eq. (66), which is just a linear third order ODE, has regular
singular points. Checking the Painlepeoperty for this reduces to doing the necessary Frobenius—
Fuchs analysis at these regular singular points to check that no logarithmic singularities in the
solutionsg; arise. Finally, Eq(68) gives an explicit formula for involving two quadratures. Here
the necessary analysis involves writing series expansions for the integrands near the zeros and
poles ofp, and checking for the absence of 44z;) terms, which would give rise to logarithms
on integration. We do not present all these calculations in detail; with the aid of a symbolic
manipulator they are quite straightforward. We conclude that the Galilean-invariant reduction of
the second deconstruction of super-CH has the Pairgevgerty.

We note, in conclusion, that two of the equations we have encountered are interesting variants
of the Lameequation: In(66), the substitutiorg, =p~*h; yields

p ¢ ¢ 7

3

ey T8 T e T 2p2

)hiZO, (77)

and similarly, on writingu;=p~ Y%, the homogeneous part 83) takes the form

3 c 3
—p——z——z)k=o. (72)

k+v 4 4p

By the arguments above, the latter is integrable by quadratures.

VI. SUPERPEAKON SOLUTIONS

As mentioned in the Introduction, one of the intriguing features of the CH equation is the
existence of peakon solutions. One would hope that super-CH shares this property. However,
peakon solutions are weak solutions, with a discontinuity in the first derivative; and the action of
supersymmetry on such functions, for a general underlying Grassmann algebra, yields objects
which are not regular enough to be considered as weak solutions. So, CH peakon solutions do not
admit a general supersymmetrization. The above argument does not hold in the first deconstruc-
tion, because if there is only one fermionic generator, the supersymmetry transfort2éjidoes
not involve anx-derivative. So such supersymmetrized peakon solutions of the super-CH system
(39 do exist if the fields are restricted to take values in a Grassmann algebra with only one
fermionic generator.
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Consider Eqs(40) of the first deconstruction. Supersymmetry implies thatufnf) is a
solution of the first equation if40), then & =cu, n;=cm (wherec is a constantgives a
solution of the second equation. Thus, for example, the spdral/eling-wave peakon solution of
CH, u=v exp(—|x—ut]), can be supersymmetrized, as can any multipeakon solution. In fact, there
also exist more general superpeakons. The superposition ansatz,

N

u(x,t>=i§1 pi(t) exp(—[x—a;(1)]), (73
N

§1<x,t>=i§l ri(t) exp(— [x—a;(t)]), (74)

gives a solution of the syste(d0) provided the functions;(t),p;(t),r;(t) (i=1,... N) satisfy the
ODE system,

N
Qit=j§=:1 p; exp(—[ai—q;]), (75
N
Pi= 2, sgrici—a;)pip; exp— i —q), (76)
N
ritzajzl’ sgr(q;—q;)(pirj+p;jri)exp—|di—q;)), (77)

where the primed sums range over valueg #fi. Equations(75) and (76) are the conditions
which determineu of the form(73) to be a multipeakon solution of CH. They describe geodesic
motion on anN-dimensional surface with coordinates' and form an integrable Hamiltonian
systent® The further equationé77) are linear equations for the functions. Clearly, taking the
ri=cp; for some constant gives a solution, these being the supersymmetrized multipeakon
solutions discussed befor®lore general solutions certainly exissince the systertir5)—(76) is
integrable, integrability of the addition& linear equationg77) depends on the existence Nf

—1 independent conserved quantities depending om;th&/e have not settled this question in
general, but we note thax_ ,r; is a conserved quantity, just as the total momentijin, p; is also
conserved. This suffices for integrability whéh=2, in which case the remaining equation for
r,—r, can be integrated explicitly. Note that unlike the existence of the superpeakons which arise
in virtue of supersymmetry transformations of CH peakons, the existence of this extra conserved
quantity depends critically on the coefficients of theevolution equation ir{40). Even if the full
superpeakon systefT7) proves not to be fully integrable, the geodesy and supersymmetry con-
ditions have certainly picked out an equation with some integrability propddfeRef. 19.

VIl. OUTLOOK

In this paper we have examined fermionic extensions of the Camassa—Holm equation. In
particular we have identified the super-CH syst%), which, for low dimensional Grassmann
algebras displays some integrability properties and has peakon-type solutions. Further investiga-
tion is needed to determine whether the super-CH system is fully integrable.

Our work provides a further instance of integrability properties arising in the context of
geodesic flows on a group manifold, and in particular provides some evidence that supersymmetric
geodesic flows whose bosonic part is integrable must also be integrable.

We note in closing that the KRand super-KPsystems have yet to be presented as geodesic
flows. If such a presentation exists, it would have a bearing on the question of whether there is a
KP-type higher dimensional generalization of Camassa—Hahising in a way similar to that in
which KP generalizes KdV/
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A soliton cellular automaton associated with crystals of symmetric tensor represen-
tations of the quantum affine algehﬂqil(Aﬁ,ll)) is introduced. It is a crystal theoretic
formulation of the generalized box—ball system in which capacities of boxes and
carriers are arbitrary and inhomogeneous. Scattering matrices of two solitons co-
incide with the combinatoriaR matrices oﬂJ(’](A,(\,'”_ 1)- A piecewise linear evolu-

tion equation of the automaton is identified with an ultradiscrete limit of the non-
autonomous discrete Kadomtsev—Petviashivili equation. A cladssafliton solu-

tions is obtained through the ultradiscretization of soliton solutions of the latter.
© 2001 American Institute of Physic§DOI: 10.1063/1.1322077

I. INTRODUCTION

The box—ball system invented by Takahashi and SatSisren important example of soliton
cellular automata. It is a discrete dynamical system in which finitely many balls move along the
one-dimensional array of boxes under a certain rule. Its integrability has been proved in Ref. 2 by
making a connection to the difference analog of the Lotka—Volterra eqdatiosugh the limiting
procedure callediltradiscretization

By now the original box—ball system has been generalized into several directions. First, one
can introduce the balls distinguished by the index from thd 5&; . . . M}. Second, one lets the
box at siten accommodate up t6,, balls, where the capacit§,, may depend om. Third, one can
introduce acarrier with capacity«; to redefine the time evolution at tinte The carrier comes
from the left and proceeds to the right, picking up the balls in a box and dropping them into
another under a certain rule. While it goes through the array of boxes, the successive loading—
unloading process induces the motion of balls over the boxes, hence the time evolution of the
system. These generalizations of the Takahashi—Satsuma box—ball system are characterized by
the parametersM, 6,,,«;). (n, t e Z play the role of space and time coordinates as in the diagram
in Sec. 11C) The original oné corresponds to the choiceM(V 6,,,V k) =(1,1%). The case
(M,V60,=1V k=) was introduced in Ref. 4 and studied in Ref. 5. Similarly, the cases

¥Electronic mail: atsuo@gokutan.c.u-tokyo.ac.jp

0022-2488/2001/42(1)/274/35/$18.00 274 © 2001 American Institute of Physics
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(M=1,V0,=6, Vk=k) with x>0 and M, 6,,,V k,=») were treated in Refs. 6 and 7, respec-
tively. These works have been done mainly from the viewpoint of the ultradiscretization.

The purpose of this paper is to study the genekél 4, ,«;) case. In Sec. Il we formulate the
corresponding generalization of the box—ball system in terms of the crystal théBhe latter
is a representation theory of quantum groupsat0. The unexpected link between the crystals
and the box—ball systems has also been exploited in Refs. 11 and 12 through a crystal theoretic
interpretation of thé -operator approach’ The idea is to regard the box—ball system as a solvable
vertex modet* at q=0 under a “ferromagnetic” boundary condition. More concretely, the box—
ball system corresponding to the daM,@,, «;) is naturally related to thEJt;(A(,V})) vertex model
at =0 whose inhomogeneity in the quantum and auxiliary spaces is parametrizégdshgnd
K¢'S, respectively.

Let B, be the classical crystal df;(A{;)) in the sense of Ref. 9 corresponding to tHeld
symmetric tensor representation@f(Ay). Then the array of boxes and the ball configurations
are identified with the elements from-®Bgn® By, @ . The time evolution by the carrier

with capacity «; is realized as the action of theg=0 row transfer matrix acting on-®By
®By ® with the auxiliary space corresponding B.. We call the resulting dynamical

system theA{}) automaton. It is the most general one in thg case as far as the crystals for
symmetric tensors are concerned. For generalizations to other root systems, see Ref. 15 for a
supersymmetric one and Ref. 11 for the nonexceptional series otheAﬂ‘?an

In Sec. lll we introduce solitons and study the two-soliton scattering. As in Refs. 11 and 12
we label the solitons in terms of the elements ofU{f{Aﬁ,,l)_l)-crystaI& , Wherel plays the role
of the amplitude of a soliton. In the collisions of two solitons associated ®ijtand B, , the
scattering matrix is shown to coincide with the combinatoRainatrix giving the isomorphism
Bi®B=B,®B, of the U,(A{;),) crystals. These features are essentially the same with the
Y 0,=1 case:'*2A new aspect here is that depending on the amplitlidesnd the parameters
0., «¢, the smaller soliton can overtake the larger one. This is most transparently understood by
viewing the scattering from the cross channel. By interchangjpand «;, one can swap the role
of the space and time and thereby the boxes and carriers. Then the curious scattering mentioned
previously reduces to the “usual” one in the cross channel where the larger soliton overtakes the
smaller one. In Sec. Il D we also give a brief sketch of the conserved quantities of our automaton
following Ref. 12.

In Sec. IV we set up a piecewise linear equation for the relevant combinafomaltrix'® and
the resulting evolution equation for tmév,l) automaton. Extending the earlier resultie identify
the evolution equation with an ultradiscrete limit of the nonautonomous discrete Kadomtsev—
Petviashivili(ndKP) equation. A class o soliton solutions is obtained through an ultradiscreti-
zation of ther functions. As in the previous casene needs to make a fine adjustment of the
fermion momenta entering the vacuum expectation value expression aof filnections. Each
soliton in the automaton is obtained by lettiiy solitons in the ndKP merge together in the
ultradiscrete limit.

Section V is a summary. Appendices A and B contain the details of the proofs of Proposition
3.8 and Theorem 4.5, respectively.

II. AUTOMATA FROM CRYSTALS
A. U, (AY) crystals

Let By be the classical crystal dﬂ,’l(Aﬁ,ll)) corresponding to thé&-fold symmetric tensor
representation. As a set it consists of the single row semistandard tableaux ofkesrgtbtters
{1,2,... M+1}:

By = {far—mg] | mi € (L., M+1),my < - < my},

where we have omitted the—1 vertical lines separating the entries. We also represent the
elements by the multiplicities of their contents. Namely,
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b= ] € B

is also denoted bip=(X1,X5, ... Xp11) With x;=#{l|m,=i}.
Denote the Kashiwara operators®f by f; and®, fori=0,1, ... M. The actions o8&, f; on
B are defined as follows: fdo=(X1,Xs, . .. Xm+1) € By,
'é0b=(X1—1,X2, e !XM+1+1)!
?0b=(xl+ 1,X2, P 1XM+1_1)!
éib:(xl, Ces !Xi+1vxi+l_1! e !XM+1) for i:]., ..M,

Tb=(Xy, ... Xi—1Xj41+1, ... Xys1) fori=1,...M.

@

In Eq. (1), the right-hand sides are to be understood as 0 if they are ri®t.irA crystal can be
regarded as a colored oriented graph called a “crystal graph” by defining

i ~
b—b’'—fib=b’.

Thus, for example,

Blz{z"'a}

has the crystal graph:

1 2 3, ...... M—l M M+1l

Settings;(b) = max {& Ib+0|I=0} and ¢;(b) = max {f b+0||=0} for be B, one has

eo(b)=X1, &(b)=x., for i=1,... M,
(,Do(b):XM+1, (,Di(b):Xi for i=1,... M.

The data are necessary when we treat tensor products of the crystals. For two &ystdlB’,
the tensor produdB® B’ is defined. As a set,

B® B,:{b1®b2|b1€ B,sz B’}

The actions o®, andf; are defined by

_ - €b®b, if @i(by)=¢i(by)

SO0 s, i g(by <e(by)’ @
% (boob.) = f.b,@b, if @i(by)>ei(by) 3
(LB T, i eib=e(by) ®

Here O b andb®0 are understood to be 0. For two crystBl&ndB’, the tensor products8’

®B andB®B’ constructed as shown previously are again crystals which are canonically isomor-
phic. The isomorphisnR: B'®@ B=B®B' is called the combinatorid® matrix>*¢ By the defini-

tion R commutes witﬁi , g foranyi=0,1,... M. (More precisely one introduces affine crystals

and the associated energy function, but in this paper we shall exclusively treat classical crystals
and concern the energy function only in connection with the conserved quantities in Sec. Ill D
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FIG. 1. Crystal graph obj(A))-crystalB,®B; .

Example 2.1:Figures 1 and 2 are the crystal graphsWff(ASY)-crystalsB,@ B, and B,
®B,, respectively.
Example 2.21et B'=B,, B=B; of UC’!(A(Zl)) crystals.

(i) R:[13]e[2]~ [1]®[23]
(i) R:[23]®[2]~ [3]®[22]}

These are obtained by comparing the crystal graphs in Example 2.1.
We write the highest weight element B), with respect toJ,(Ay) asuy:

uk== (k,0,---,0) € By.
(4)

B. Isomorphism

Here we give an explicit procedure to obtain the isomorphignB,® B,— B, ® B, without
drawing the whole crystal graphs B{®B, andB,®B.

Let b;®b, be an element iB,® B, such ad;=(Xq, ... Xy+1) andb,=(y¢, ... Ym+1)-
We represenb;® b, by the two-column diagram. Each column Hds+1 rows, enumerated as 1
to M+1 from the top to the bottom. We put (respectivelyy;) dotse in theith row of the left

FIG. 2. Crystal graph obj(Af))-crystalB,®B,.
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(respectively right column.

- -0 - -0
S—— S——
=1 v1
o -0 - -0
S—— S——
=3 v2
by ® by =
g . o- -0
N’ N’
M 41 YM+1

Proposition 2.3: The rule to obtain the isomorphism R is as follows

(1) Assume &1 (respectivelyk=l). Pick any dot, saywg, in the right (respectively, left)
column and find its partnesj in the left (respectively, right) column. Tl is chosen from the
dots which are in the lowest (respectively, highest) row among all dots whose positions are higher
(respectively, lower) than that odg . If there is no such dot, we return to the bottom (respec-
tively, top) and the partnee} is chosen from the dots in the lowest (respectively, highest) row
among all dots. Conneaig and @45 by a line. We call the lines in the latter case winding and
in the former case unwinding

(2) Repeat procedure (1) for the remaining unconnected dets$)(times [respectively, (k1)
times].

(3) The isomorphism R is obtained by sliding the remaininglKrespectively, (k)] un-
paired dots in the left (respectively, right) column to the right (respectively, left)
The R obtained by this rule has the correct property as the isomorphism. This fact has been proved
in Sec. Il of Ref. 16. We will write the relatioR u®v—v’'®u’ also asu®v=v'®u’. Obvi-
ously one has

U@ Uj=U;&® Uy (5)

for the element4).
Example 2.4 et M=2,k=2,1=1. Examples 2.2i) and 2.2(ii) are obtained by the follow-
ing diagrams:

(i) , (i)

The line in(i) is unwinding and that irii) is winding.

Supposeb®b’ e BeB’ is mapped tob’©@beB’®B under the isomorphisnB® B’ =B’
®B of U(A{Y) crystals. AZ-valued functioH on B®B' is called arenergy functiorif for any
i andb®b’ e BB’ such thai®;(b®b’)+#0, it satisfies

H(&(bob'))=H(b®b')+1 if i=0,p5(b)=eq(b"),po(b’)=e4(b)
=H(b®b')—1 if i=0,p4(b)<eq(b’),eo(D)<eq(b)
=H(b®b') otherwise. (6)

When we want to emphasi&ZB’, we write Hgg: for H. This definition of the energy function
is due to(3. 4. e of Ref. 16, that is a generalization of the definition for e B’ case in Ref.
9. The energy function is unique up to additive constant, sBe®’ is connected. By definition,

Hgg (b®b’)=Hpg g(b’®b). Throughout this paper we normalize it as

Hpp, (Ui@Uu) =0, (7
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irrespective of <k orI=k. Then it is the result of Ref. 16 that the energy functiof-4) times
the number of unwinding lines in the sense of Example 2.4.

With a successive application &'s, one interchanges the order of tensor product pairwise
and obtains the isomorphism a‘kl®---®Bkn and kal<z<>---(>z>kan for any permutatiorP. The

compatibility of this construction is guaranteed by the Yang—Baxter equation obeyRdTie
following assertion follows easily from Proposition 2.3.

Proposition 2.5: Let k,k,, ... eZ-, be any sequence. Suppose lh<1®"'®ukn201®"°
®c,®b’ is valid for some b and ¢'s under the isomorphism|BBkl®---®Bkn:Bk1®---
®By ®B,. For any be B,, there exists g such that B=u, for all n=n;.

This property will be needed in constructing the automation in Sec. Il C.

C. Automaton

Let ...,0_1,00,0,,... and ...x_q,kq,k1, ... be two sequences of positive integers.
Denote the former indices hy, and the latter indices by Consider the two-dimensional lattice
with n andt directions,

n direction @By ®By By @,

t direction ---®B, ®B,®B, ®--
t—1 t t+1
In terms of the box—ball system8, is the capacity of the@th box, andk; is the capacity of the
tth carrier.

Draw t-constant lines horizontally, angconstant lines vertically. Number the former down-
ward, and the latter to the right. At any horizontal or vertical line segment of the lattice, we
inscribe an element of the crystals in the following way. At the point labeledt,by), we put
bl e By, on the upper line segment am(ﬁteBKt on the left line segment. Thus we halul{s;+1

€ By, on the lower line segment and,, e B., on the right line segment.

n—1 n n+1

t—1
bt
tYn|,,t
. U, ’U,n+1
i1
b,
t+1

We impose the condition that they are related by the combinat@riaatrix,
Rvlebl=bi et . (8)

In the following sections, we consider the time evolution of the system downward. In view of
Proposition 2.5 we can and will exclusively consider the case where fot,d)‘,uytugn only for

finitely manyn’s and similarly for anyn, v}, # U, only for finitely manyt's. Sometimes we ignore
vi’s and display the time evolution of the system only with the arrays

- b%, b%; bY b? bY -,
-+ b, bt; by b} by -+,
- b%, b2, b3 b b3 -
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In short, the evolution of the arraip'} to {b},"'} is determined by

B, ®(®B, ®By ®)=(®By ®By ©)®B

KtY

t t t+1 t+1
uKt®('"®bn®bn+1®"')z("'®bn+ ®bn:1®"')®u:<t-

under the successive applications of the combinat&tialatricesR: B, ® ng;B,,J,@BKt.

Settingp=---®b\®b!,, ;® -, we denote the time evolution induced by as above by
T, (p)="®b; '@b i . Obviously the time evolutions are invertible, and dugZpthey
are commutative,

TKTKF:TK;TK. (9)

In the rest of the paper, the two-dimensional lattice on which the automaton is defined should be
appropriately understood either as large but finite or formally infinite depending on the situation.
The following observation will turn out to be useful in the sequel.

Remark 2.6: Interchanging the role of “space” and “time,” one can viéyas the evolution

of the array---®v i ®v!,  ®vl j® - to the left as

t+1 t+1

-1 -1
TGn('"®Un+1®vﬁ1+l®v¥1+1®'"):"‘®Un ®U§]®Uﬁ] &

Example 2.7: Let M=3,V6,=1, andV k;=0°,

--1111421131111111111121
--1111114213111111111121
--1111111142311111111121
--111111111124311111111
--111111111112143111111
--111111111111211431111

where i denotesj. This is a typical two-soliton scattering. One can see that a soliton with

amplitudel moves to the right with velocity if separated sufficiently. Hence the larger solitons
overtake the smaller one¢See Sec. Il A for the precise definition of the solitons and their
amplitude)
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Example 2.8: Let M=3, V 0,,=2, andV «,= 1.

4 11 11 33 11 11 1 111 11 11
1-4—4—t+-1+-14+3 4141414 1—4-1—4-1-41
11 14 11 13 13 11 11 11 | | 1
l—4+—1—+4—4+1—+341—4—1—4-1-4-1—4—1—1—1
e I T ‘
111444143+ 1—4-1—4-1—f-1—4-1—1
1 1 11 14 13 13 .11 11 11 11 11
1111444143414 1—4-1—-1-H-1
11 11 11 11 34 3 11 11 11 1
l—4—1——1—f-1——1 -3 ——1——1—4—1—-1
1 11 11 11 14 | 113 1l
l—4—1—+—1—4-1—4—1—4—4—4—1——1—3
1
|
I

w
= —
w -

(=

—_
[y —
— —

—_
— —
[oey —_

—

1 11 11 34 11 11 13

1——1—4-1—43—4—1—4—1—-4—3——1
11 11 11 11 11 14 13 11 11 13 11
1—+—1—+1—4-1—41—41—4—4—4—1—4—1—4-1—4—3—
11 11 11 11 11 11 34 11 11 11 13

Herei andij denotej andm, respectively. We have depicted both varialdlely and{v'}. This

time 14 on the top left is the smaller soliton and 33 o013 is the larger soliton. Thus in terms

of the{b!} variable, the smaller one overtakes the larger one as we go down the figure ending with

the solitons 34 and 13. This is an opposite feature from the previous example. However in the

space—time interchanged pictuRemark 2.6, it reduces to the situation similar to Example 2.7.

Namely, in terms of the{vl} variable, the larger soliton overtakes the small one as
.43...3..—...4...33, as wérace the diagram from the right to the left.

D. Equivalence with box—ball systems

Our Afvll) automaton can be viewed as a generalized box—ball system. One interprets the letter
1 in the tableaux as an empty space and the other letteissM +1 as the balls with index
M+ 2—i. The elemenb!, signifies the balls contained in tth box with capacityd,, at timet.
Similarly vL stands for the carrier with capacity;. Then (8) tells that through the loading—
unloading process, the box and the carrier changeb’h*tb andvl, ,, respectively. Sending the
carrier through to the left, one has the time evolution of the box—ball staté},® b}, ;®- - into
@bl teblti®---. For a concrete rule describir(@) in terms of the box—ball terminology,
see theBBS scattering rulén Ref. 5. Relation(8) will also be expressed as a piecewise linear
equation in Proposition 4.1.

WhenV k= we claim that the evolution dfb'} in our A{}) automaton is equivalent to the
box—ball system studied in Ref. 7 under the above-stated translation. In the latter the one-
dimensional array of boxes with capacities. ,0,_1,6,,0,+1, - - . accommodate the balls with
an index from the seftl, . . . M}. The dynamics of the balls in each time step is governed by the
following rules’

(1) Move every ball only once.

(2) Move the leftmost ball with index 1 to the nearest right box with space.

(3) Move the leftmost ball with index 1 among the rest to its nearest right box with space.
(4) Repeat this procedure until all of the balls with index 1 are moved.

(5) Do the same procedur@)—(4) for the balls with index 2.

(6) Repeat this procedure successively until all of the balls with indeare moved.

If the ball with some index is absent, one just proceeds to those with the next index. A box with
space means the one that contains strictly fewer balls than its capacity. If a box contains more than
one ball with the same index and they are not yet moved at an instant during the procedure, one
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may pick any one of them when looking for the leftmost one. The equivalence to our automaton
with V x;— o0 is shown by the fact that both lead to the same evolution equation, which is given
from Proposition 4.1 under the said limit.

The above-mentioned rule tells that the time evolutibn in our automation admits the
following factorization:

T.=Ty - ToT4, (10

whereTj moves the balls with indek only, and we identify the left-hand side with the corre-
sponding operator acting on the box—ball systems.

For later convenience we introduce ttenonical systerfollowing Ref. 5. We keep assuming
VY k= and stay in the description in terms of the box—ball system rather than crystals until the
end of this section. Thus we identifye B, with the capacityd box containing the balls as
specified before. Suppose a stpte---®b,®b,, 1®--- containsJ balls in total. Then the action
of Ty --T,T, consists of] steps, each of which is to move a certain ball. To a ball to be moved
in the jth step (kj=<J), we assign aignature | The assignment is unique up to the trivial
freedom among the commonly indexed balls within the same boxes(pgtbe the ball configu-
rations obtained fronp just by regarding the signatures as new indices. It consists of the same
array of the boxes and balls as before but with the new distinct index from 1Jt@ne can still
let c(p) evolve under the previously stated rul€lg—(6) by replacingM therein withJ. The
resulting new box—ball system is called the canonical system. By a close inspection of rules
(1)—(6), it is not difficult to confirm the commutativity:

c(Ty - ToTo(p) =Ty ToT1(c(p)). (12)

In this sense the canonical system essentially grasps the time development pattern of the original
one. This fact, first recognized in Ref. 5 f¥r6,= 1, will be utilized in Appendix A.

[lI. COMBINATORIAL R MATRIX AS SCATTERING MATRIX OF ULTRADISCRETE
SOLITONS

Here we prove Theorem 3.10, which identifies the scattering matrix of the ultradiscrete soli-
tons with the combinatorigR matrix of U(’](Af\,,l), -

A. Solitons

Let By, be the classical crystal df(A{;),) corresponding to thé-fold symmetric tensor
representation:

By = {[mr—ma] | mi € {1,... , M}, my < -+~ < my}.

Denote the Kashiwara operators ®f by T/ and® for i=0,1, ... M—1. For distinction, from
now on we use the notatid®y ,T; & for U(A{)) crystals andB; T/ & for U;(Af;) ) crystals.
Let RandR’ be the combinatoriaR matrices forU (A{) and U;(Af;) ,), respectively. Thus

Rf,=f,R andR’f/ =F/R’ hold when they act on the tensor product of two crystals, and similarly
for & & . (We will specify the crystals that they act on each time.
Remark 3.1: When M 1 we still define B as above, which is the set with the single element

we=[1...1]

We further understand that th‘eU(’](Agl))” combinatorial R matrix R B/ ® B,— B, ®B; is given
by R (u®u)=u®u,.
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For eachk e Z- 1 define a map, by

T : Bllc e (Bl)®k
] o [merde e me)
Letkq, ... kyeZ=q1andLgy, ... LyeZ-oforsomeNeZ. . Interms of;, we further introduce
a map
Z(LO ----- LN).B/ ® - ®B! (B )®L0+---+LN+k1+---+kN
Kyo oo ky oKy kn 1
by
{Eo N (b @by @ - ® by)
L QL ®L
—.®O®Zk1 b1) ®.®l®7/k2 () ®-- ..Nl®1kN bn) ®. N
In particulars=1{"?. The mapz(kto’_ ) is injective. For eaclke 7., let s, denote the map
st (B)®* — B
[r]® @[]
where I=m;<---sm<M+1 are just the reordering @fi, . .. ,m, into the weakly increasing

order. We assume thd:=%, 6, is sufficiently large. We set

b:('"®§(;n®ggn+l®'"):B?L—V"®Ben®Bgn+l®'" . (12)
For non-negative integersy, ... Ly such thatC=Lg+---+Lytky+---+ky, denote by
(kLO """ N) the composmonﬁoz(LO’ "'k'LN), ie.,
1ok e LOHIPOSTIOILR G, T
Z(LO ..... Ln) A
" Lo (ST Kn ; 9
----- '/ ! ®
klc’)""kNN By ® "®B; ——— By"—®B, ®B,  ®. (13

Suppose that the image is obtained from the elementu, ®u,  ®--- by replacing only the
isolated segments, ®u, = ®---®@Uy (n;<nj) with someb, ®---@b, B, ®---®Bg , for

1<i=<N. Assume further that the interval is sufficiently large, namelly,, n'_,
>max(y, ... ,Ky) for any 2<i<N. In such a case we call the image (@B) an asymptotic N
soliton state Each soliton is essentially associated with an elemer,in and we callk the
amplitudeof the corresponding soliton. States obtained from an asymptosialiton state under
arbitrary time evolution§' -++T,, will be calledN soliton states This definition will naturally be

.....

necessarily an “overall translation” dfL3) in a naive sense even whéri — L |s i independent
for i<N ori>0. See Example 3.2 in the following.

First we consider th&N=1 case. As it turns out in Proposition 3.3, there is no distinction
between an asymptotic one-soliton state and a one-soliton state. Moreover one can check that the
definition of the one-soliton state here agrees with the one-soliton solution that will be given later
in (B1). Given a one-soliton state

p='®by 1®b,®by;1® e ®B, ®By®B, ®,
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one can unambiguously specify integer&(=1),s,t by the conditions:

bj=ug, ifj<norj>n+k,

bn:m 1<t<6,,2<m; <--<m<M+1,
bugk =[L-dmf--ml] 0<s<bpp—1,2<m < <m<M+1,

bpily- -« »buyg—1 do not contain 1 in their tableaux.

Note that “if" in the first condition is not “only if” in that b, =u, | is allowed as=0. The

amplitude of the soliton according to the above-mentioned definition equal,, +---
+6,k-11S. We set

X(P)=2, O;—t, y(P)=t+Oh 1t + b1

j=n

and callx(p) the coordinateof the soliton.y(p) should not be confused with the amplitude of the
soliton.
Example 3. 2Con5|derB(, ® @By, with 8,=6;=1, 6,= 6,= 65=2, and65=3, hencel

=11.
(i) Take

b=[1]e B..

Then L(lLO’Ll)(b) with Lo+L,=10 are examples of one-soliton states with amplitude 1. One has
(D) = 28(b), {*O(b) = > b), and:{*¥(b) =1{"F(b) =2 (b). ForL,<8 they look as

P n n+k z(p) y(p)
(‘”")b) [2Je[ille[l]eil]e[11]e[i1]
£90) =[1]e[2]e[l]e[1]e[i1l]e[11]
Ll“)(b =[]e[1]e[2]e[i1]e[111]e11]
(5'5’(b)—l®-®l®-®-®-
£20) =[Je]e[le[il]e112]o[11]

where we have also listed, n+k, x(p) andy(p).
(i) Take

2
3
4
5
6

Ot W N =
o Clow N O

=[11223] € B..

Then L(l"o"‘l)(b) with Loy+L,=6 are examples of one-soliton states with amplitude 5. lkpr
<5 they look as

p n n+k xz(p) y(p)
L) =[4]eB33]e2)e[2]e[lile[il] 1 4 0 4
“5’ =[1eB4e3le[22]e[l1]eil] 2 5 1 5
24)(c) Melde3le@]em2)ei] 2 5 2 4
L0 =[eM]e[deBs])e[i22]e[1l] 3 5 3 3
(4’2)(0)‘.®-®l®-®-®- 4 6 4 5
£V =Mellelle4s238le[i2] 4« 6 5 4
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In Sec. Il C we will make use of
Proposition 3.3: Letp=L|(L°’L1)(b) be the one soliton of amplitude | associated with b

e B/ . Then its time evolution Jp) is again one soliton and expressible as(p) = Ll(LO’Ll)(b)
for some lj,L; (Ly+L;=Lo+L4) but with the same b B/ . The difference of their coordinates

(velocity under T,) is given by

K, Kk<y(p)
X(TPN=XPI=) i) +max 0, 1,00, k=y(p).

The proof is done by a cumbersome case study. When=1, the above result simplifies to
X(T(p)) —x(p) =min(x,l) in agreement with Ref. 12. In general, the velocity varies locally de-
pending on the datdd,}. In Example 3.2(i) one hasT,(:{**(b))=>®(b), T.({>®(b))
=3(b), T (37(b))= (b)), T.(>F(b))=P(b) for any k= 1. Similarly in (ii) one has
T.(:£29(c)) = <" 5 ) (c) for any k=1, wherex’ =min(x,5). These results agree with Propo-
sition 3.3

- ®@bL®bl, @ =T, T

K Ko
be its time evolution. Assume that the solitons are sufficiently separated without an interaction
throughout the time interval under consideration. Kel} be the associated variables on the
vertical edges as ii8). Then in the space—time interchanged picture, the statev! '®uv"
®--- is also an asymptotibl soliton state associated with the sam&---®cy. Namely,

(Los-ems Ly)

t+l, t =
QU =Kot

. ..®Un

for someLy, ... LY. Here

R=(®s, ©5,®)BfM— 0B, ©B @,

Ki+1 Kt

is an analog of in (12), and we have set1=3, .. The figure in Example 2.8 will be of help
to understand this fact. In a sense one can employ either picture to describe the scattering process.
Indeed our discussion at the end of Sec. Il C will rely on this observation.

B. Scattering of two solitons: A typical case

Our aim here is to show Theorem 3.9 which is valid in the “typical” situat{@).
Lemma 3.4: For each=1, ... M—1, we have a commutative diagram:

B, o (B

é::J/ léH‘l

B, U {0} —*— (B))®* U {0},

where,(0)=0. The same relation also holds betweenahd /. .

Combining Lemma 3.4 with the realization Bf, in Bf”’ as alUy(Ay) crystal(cf. Ref. 17,
one can derive the following lemmas.
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Lemma 3.5: In the diagram

J(Eo.L1.L2)

Bj®B, —“—— (- ®By,®By, @ )
éng léiﬂ
Ll(Lko,LbLz)
(B{® By U {0} “£ (@ B, ® By, ©--+) U {0},
Lo,L1,Lo)

suppose that the image mﬁk is an asymptotic two-soliton state. Then the diagram is

commutative for any=+1, ... M—1. The same relation holds also betwé*e,*nathfiJrl

Actually, the commutativity of the above diagram holds under a milder condition than being
an asymptotic two-soliton state.

Lemma 3.6: Let p, . .. ,py be the subsequence of a . . ,a . (a e Bgn) consisting of all the

elements such that,a u, . Assume the same relation betwedn p. . p,and &, ... .,a . Then
forany t t' eZ., and ke Z-, the two relations

Tii1(P1® - @py)=p1®- @ P,

Fi(uea 0 --0a euf)=uval® -@a eust

are equivalent for each=#1, ... M —1. The equivalence persists even when the right-hand sides
are both 0. The same is true also fgr, ¢.
Proposition 3.7: Suppose an asymptotic two-soliton state has evolved into another as

T2 2 bec)) =01 2 (' wb) (14)

for somex,t,L;,L{>0b,b" € B/ and ¢c’ € B;. Then(14) is also valid under the replacement of
bec (respectivelyc’ ®b’) by T/ (bec) [respectivelyf/(c’®b’)] for any i=1, ... M—1 such
that f/ (b c) #0.

Proof: (14) is equivalent to

LooLyiLs
ug'® ot (be o) =4 02 (¢’ eb ) o ult.

Apply ,.; to both sides. Due to Lemmas 3.5 and 3.6, the result becomes

uf'e P (F (bee)) = o2 (' eb)) e ul.

O
Proposition 3.8: Let Bk and assume thag‘f‘ko‘Ll'LZ)(b1® b,) is an asymptotic two-soliton
state with

b,=(1,0,...,0eB/, b,=(h,k=h,0,...,0eBy (15
with 0<h<k in the notation of1). Assume further that+ ,, for all but finitely many n’s. Then

if k>1, there exists+0 such that the result of the time evolutioh @lso becomes the asymptotic
two-soliton state as

T 0 (b8 b)) = 4 2P (cpmey), (16)

where g ,c, are given by
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c,=(k0,...,0eB,, ci=(—k+hk—=ho0,...,0eB. (17)

The proof is given in Appendix A. In fact both;®b, andc,®c, are Uy(Ay_1) highest
element, i.e.®/ (b,®b,) =8/ (c,®c,) =0 for all 1<i<M — 1. Combining this property with the
conservation of weighténumber of the lettejsand the soliton contercf. Sec. Il D), one can
argue that the outgoing state should necessarily correspocylto; if it is an asymptotic two-
soliton state at all. However, to establish the separation into two solitons asymptotically is not a
trivial task for inhomogeneoug,’s only bounded by the conditior= 6,, for all but finitely many
n's. So far we have not managed it without recourse to the actual two-soliton solution as in
Appendix A.

As aUy(Ay 1) crystal, theUé(A,(v,l)_l)-crystalB|’®B{( decomposes into the connected com-
ponents. Each component is parametrized withUgeA), ;) highest elementb;®b, (15), and
is generated by applyinﬁ operators (i<M—1) to it. The decomposition of the same pattern
takes place also foB, ® B/ according to the highest elememtg® c,. Combining this fact with
Propositions 3.7 and 3.8, we conclude that there exists a$h&g matrix) uniquely defined by

S, : B|, ® Bll(% Bl’<® B|, y
(18)

! ! !
(Lg.Ly.Ly

(s (bec)),

(432 (bec)) =
under the condition
k>I1>k, 1>6, for all but finitely manyn’s. (19

It describes the two-soliton scattering.

Theorem 3.9: Under the assumptioi19), we have R=S' on the U,(A{;) ,)-crystal B
®B,.

Proof: By the definition and Proposition 3.7, botl andS’ commute with?i’ for any 1<i
<M — 1. Moreover, for anyU,(Ay-,) highest elementb,®b, given by (15), their actions are
the same, i.e.$'(b;®b,)=c,®c,=R’'(b;®b,), where the latter can be verified from Proposi-
tion 2.3. O

Thus in situation(19) the larger soliton overtakes the smaller soliton and the scattering matrix
coincides with the combinatorid® matrix of theU(’](A,(\,'l)_ 1) crystal. For instance Example 2.7

tells that
s':[13]e[Z~ [[e[:]

This agrees with Example Zi2.

C. Scattering of two solitons: General case
First let us consider the homogeneous cd#g= 0,V k= k. Fix positive integerd>k. We
study the scattering of two solitons in-® B,®B,®--- with amplitudesl and k under the time
evolutionT'.. The qualitative feature of the scattering depends on the following cases:
(i) 1>k=max b,k), v|=v =k,
(i) min(8,k)=I>k, v,=v, =6,
(iii) I=k>k=6, v,=k>v(=Kk,

(V) k=1>k=0, v=1>v,=k,

(V) I=k>0=k, vi=k>v(=06,
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(i) k=1>0=k, v,=I>v,=0,
i) 1=6>k=«,
(viii) =1>k=«k,
(ix) I=6>«k=Kk,
(X) 0=1>k=k.
Here the classification has been done so that
{(Du(in) VI Gl ) U (iv) U (v) U (Vi) LI (vii ) U (viii ) U (iX) U (X) .

For example, casddi) and(iv) share thd = k>k= 0 case. However the three groups are mutu-
ally disjoint and correspond to distinct features of the scattering as we will see in the following.
The v, andv are the velocities of the solitons with amplituti@nd k, respectively. For each
soliton it has been calculated by using Proposition 3.3 by assuming no effect from the other
soliton. In casesvi) and(x) we have excludetl= # andl = «, respectively, since they both lead

to v;=v,= 6 and hence no scattering. For the same reason, ¢asad (ii) are out of question.

Via the space—time interchange-k, casegvii), (viii), (ix), and(x) are mapped tdgiii ), (iv), (v),
and(vi), respectively[See the argument before Theorem 3.10 on the velocities in cdsegXx). |

Thus we are left with casd8gi)—(vi), wherel > 6 andv,>v, are always valid. Following Ref. 12,

we utilize the commutativity9) and consider the two-soliton scattering un@éras

T =T,V T .

The scatterings are thus divided into three stages. In the first stage, we let solitons evoIvE;'under
for sufficiently larget’. Sincel># matches conditiori19), Theorem 3.9 tells us that the larger
soliton overtakes the smaller one with the scattering rule describ&l-biR’. In the second stage
corresponding td"K, the larger soliton goes further ahead than the smaller one with no interaction

because of,>uv . Therefore in the last sta@:" , the two remain isolated even though they are
drawn back and get relatively closer. Thus we conclude that in all the ¢éigesvi), the quali-
tative feature is the same as the one in Theorem 3.9. Namely, the larger soliton overtakes the
smaller one and the scattering rule is given by the combinat&iahatrix R":B/ ® B;— Bj,
®B| . Through the space—time interchange argument, this implies the opposite feature of scatter-
ing in casegqvii)—(x). Namely, the smaller one overtakes the larger one with the scattering rule
given by the combinatorigR matrix R":B,® B/ — B/ ® B, .

We note that in casewii)—(x) one does not necessarily have<v, at any time. It actually
depends on whethar=y(p) when Proposition 3.3 is applied. Neverthelegss v, should be valid
“on average” and the above-mentioned feature of the scattering should hold due to the reduction
to cases(iii)—(vi) where the strict inequality,>uv, is always valid. To summarize, we have
shown

Theorem 3.10:Let I>k be the amplitude of two solitonsin®B,®B,®---. Under the time
evolution T, the scattering matrix of the collision (if any) in the sense of (18) or,(1,8)s given
by S=R’, where R is the combinatorial R matrix of the JA{;) ;) crystals for

(1) B/®@B=B,®B/ if min(l,x)>maxk,¥),
(1) By®B/~=B/®B, if min(l,d)>maxk,«),

(I1) no scattering(same velocity otherwise
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Example 2.8 corresponds to the cholee§=2k=«=1, hence tall) in the theorem. The
scattering matrix is read off the figure,

s [3]@[22]— [23]®[2].

This agrees with the inverse of tlematrix in Example 2.4i).

Let us comment on the inhomogeneous case wligle and «;'s actually depend on the
indices. In view of(19), the qualitative feature of the scattering remains the same as Theorem 3.10
even if we slightly relax the conditions therein. For instance the larger soliton still overtakes the
smaller one with the rul&s’=R’ if min(l,x)>max,6,) holds for almost alln andt that are
relevant during the scattering in question. In such cases we expect that the asyizoliton
state in the sense of Sec. Ill A undergoes the scattering which is essentially factorized into the
two-body ones studied here. On the other hand,$ and «,’s are not bounded by the condition
as noted previously and indeed are far from being homogeneous, even two solitons can collide
many times in general depending on the local velocities. In such a case we do not have a simple
picture of the scattering.

Example 3.11L et M=3.

0:---14-3-123-111-24-1-1-111-11-1-1111-1111-11111-11111-111-111% - - -
1:---11-1-114-233-11-4-2-111-11-1-1111-1111-11111-11111-111 - 1111 -- -
2:---11-1-111-111-34-3-1-224-11-1-1111-1111-11111 - 11111 -111 - 1111 -+ -
3:...11-1-111-111-11-1-4-113-34-2-1112-1111-11111-11111-111 - 1111 -- -
4:-.-11-1-111-111-11-1-1-114-13-1-1234-1112-11111-11111-111-1111 - - -
5:..-11-1-111-111-11-1-1-111-14-3-1114-1223-11111-11111-111-1111 .-~
6:---11-1-111-111-11-1-1-111-11-1-1134-1234-11112-11111-111 - 1111 ---
7:---11-1-111-111-11-1-1-111-11-1-1111-2334-11114-11112-111-1111 -+~
8:-.-11-1-111-111-11-1-1-111-11-1-1111-1134-11123-11114-112- 1111 - - -
9:...11-1-111-111-11-1-1-111-11-1-1111-1111-12334-11111-114-1112---

where - denotes®, and 14 for example does
€ Bs.

Not only 6,’s but alsox; are inhomogeneous here so that the relevant time evolutionbsm

the process 81— 2—3—4, whereas they ar€, for 4—-5—6—7—8—9. This is an example

of the double scattering of two solitons caused by the inhomogeneity. The larger soliton once
overtakes the smaller one, but after the collision it gets slower due to the environmental change
and is eventually passed by the smaller one again. This is easily understood from the classification
(=) in Theorem 3.10 for the homogeneous case. In the first stage welkadiex=5, k

=2, #,<3 so that the larger soliton overtakes the smaller a8)inOn the other hand we have
k=2, 0,=3 in the second stage; hence the smaller one passes the larger orfdl as-wllowing

the time evolution downward, one finds the scattering matrices for the successive collisions:

[1223]®[13] - [23] 0 [1123] -~ [1228] 0 [13]

in terms of the soliton labels with tHdé(A(zl))-crystaI elements. They agree with the combina-
torial R matricesB,® B,=B,® B, calculated from Proposition 2.3.

D. Conserved quantities

Let us give a class of conserved quantities inAjf automaton. Since our construction here
is based on Ref. 12 and the result is quite parallel, we will only present a brief sketch. Given an
automaton statp=---®@b,®b,,1®-- (b,=u,_for [n|>1), let
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u@p=--@b;_,®b ®v,®b,, @by ,®"

for someb| e By, andv,eB,. Set

Edp)==2 Hep, (n®bn.y),

which is well defined owing to the normalizati@r). By the same argument as in Ref. 12 we get
E.T.(p)=E.p) for any «,x’.

ThusE,(p), ke Z~4 form a family of conserved quantities. jifis an asymptotid\ soliton state
in the sense of Sec. Il A, it is straightforward to derive

a@=;mwmmh (20)

whereN; is the number of solitons with amplitudeTherefore if a state with the soliton content
{N,} scatters into another state with the contgdf}, N;=N, must be valid for any due to the
conservation of allE,’s. In both Examples 2.7 and 2.8 we hatlg=2, E,=3 for |=3, in
agreement witiN;=N,=1, N,=0 for [=3. In Example 3.11, we hav&, =2, E,=4, E;=5, and
E,=6 for =4, in agreement wittN,= 6,5+ 5,4.

WhenV 6,=1, (20) is obtained in proposition 4.4 in Ref. 12. An equivalent family of the
conserved quantities has also been given in Ref. 5.

Another conserved quantity is the semistandard Young tableau, which can be constructed as
follows. Given an automaton stape=---®b,®b,,1®- -, let cs--c,cq be the subsequence of
“++by_1byby 4 1o+ Obtained by dropping all thb;’s such thalbj=u0j. Eachc; has the form

gg=|1...1my...mp| 2<m <---<myp < M+1 for somec k > 1,

for which we set

gj=|mi—1...m—1|€ B

Let 7{p):=(((cy-Cy)-C3)- --* -C5) be the semistandard tableau constructed from the successive
products ofc;’s defined via the row insertion as in Ref. 18, p. 11. By virtue of thgAy ;)
invariance'? it is a conserved quantity under any time evolutibp, i.e., 7(p)=7(T,(p)). In the
context of the Robinson—Schensted—Knuth correspondéfipg, stands for the? symbol. For

any one-soliton statpzbﬁLo’Ll)(b), beBy, one hasZ(p)=b. One can also check th&{p)
equals

113]  [2]2]3] 1]1]2]2]3]
2 3

in Examples 2.7, 2.8, and 3.11, respectively, throughout the scattering.

IV. A’ AUTOMATON AS AN ULTRADISCRETE KP EQUATION

Here we investigate thé\(}’ automaton constructed in Sec. IIC from the viewpoint of
ultradiscretizatiorf:'* With the same notations 4$) we defineu;, ; andvy, ; to be the multiplici-
ties of the M+ 2—j)th content ofb!, andv},, i.e.,

t__ t t t
bn_(un,M+1,un,M1 e vun,l)v
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t_ t t t
vn_(vn,M+l,vn,M oo 'Un,l)!

Proposition 4.1: The map
Rvlebl=bi et ), (22)
is expressed by &j<M)

U = = mMa Xy — 0, Xo= O, ... Xjo1— 0, Xj= Ky, - .. Xu— &0l

nj

_ma){xl— 0n1x2_0n: P ,XJ_ en,Xj+l_Kt, e ,XM_Kt,O], (22)
Ua+1,j:U}1,j+Ua,j_UL,+jl: (23

where

M /
—yt . t t
X/—Xn;/'—i; un,i+i:21 Upj -

Actually (23) is also valid for # M + 1.

Proof: In the present proof, we abbreviaih;j andvﬁLj tou; andv;, respectively. We also put
Ujrm+1=Uj, vjrm+1=0;j, etc., i.e., each suffix is defined modwb+ 1.

We defineuj(k) ,vj(k) (j=1,2,...M+1,k=1,2,... M+1) as follows.

(1) Let Auj=Avj,:= min[y; ,v)j+1], andu(1)==uj—Aui),vj(l):vj—Av,- forj=1,2,... M+1.
(2) For Vj, we define AulY=Av{},:=minfu® v(7,], and u@:=u—Au®, v@:=p®
— A,
]
(3) Similar to step(2), we recursively defineAu{ ~1=Ap¢, D= minu! Y 0], ul”
:zuf/_l)—AuJ(/_l) andvj(/)::vf/_l)—Auj(/_l for /=2,3,... M+1.

From Proposition 2.3, we see thaf" " andv (""" are the number ainconnectediots in the
(M+2—j)th box in the column diagrams fcln}n andvl,, respectively. See Example 2.4. Noting
that Auf™ = Av™ we have

U:{f—jl:l)j+U}M+1)_U}M+l):l)j+U}M)_U}M) (24)

for 1=<j=<M+1. The following formulas are easily shown by induction:
/-1 /-1 /=1 2 /=1 7/
A
UJ( )_ma{% uj+i121 uj+i+vj+l’_§:2 uj+i+§:1 Uj+i,...,Uj+/,1+§:l Uj+i121 vj+i:|
1= = = 1= 1= 1=

/=1 /=1 /=1 7
_Uj+1_ma>{2L uj+i’.22 Uj+i+Uj+2,...,Uj+/_1+22 ”j+i'.22 Uj+i:|1 (25)
= 1= i= i=

/-1 /-1 /-1 2 /-1 /
UJ(/)Ima{E Uj—iyE Ujfi‘Hijl,E Uj7i+2 ujfia---an—/+1+E uH,E Uji}
=0 =1 i=2 =1 = =

/-1 /-1 /-1 /
—Uj_l—ma{ |21 Uj—j ,iZZ vj—i+uj—2! s ’vj_/+l+i722 uj—i ’iZz uj—i:|' (26)

Noticing U;_1=Uj y, vj+1=0j-m, We find
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M M M 2 M
M M) _
UJ( )_U,( )_ma{Eo Uj+i,zl uj+i+vj+1a22 Uj+i+21 Ujgis - % . Ujti
1= 1= 1= 1= I=M-

M-1 M M M M
+ Zl Uj+i .Uj+M+i:21 Uj+i}_ma>{i20 Uj—iaizl Vj—itUuj_q, ;2 Uj—j

2 M M—-1 M
+2 Uj_i,...,' E Uj—i+z Uj_i,vj_M+z uj—i:|' (27)
i=1 i=M-1 i=1 i=1
Subtracting
i-1 M+1
> Ut > v
i=0 i=j+1

from both mak - -] terms on the right-hand side of the equation and using the relations:

M M
UM+1=0n_El uj, UM+1=Kt_El vj,
i= i=

we get(22) from (24). Noticing that the number of dots of two column diagrams is preserved in
the rule, we obtain23). O

Our goal in this section is to show th&2) and (23) are ultradiscrete limits of théone-
constrainegl nonautonomous discrete KP equationlKP equatiojt

(bpyi=cCjr)r(t,n,j)r(t+1n+1j+1)+(cjy1—ar ) r(t+1n+1j)r(t,n,j+1)
+(aie1—bpry) 7(t,n+1j)7(t+1n,j+1)=0. (28
Here a;,b,,c; are arbitrary complex parameters. The ndKP equat®8), which is sometimes
called the(nonautonomoysHirota—Miwa equation, is equivalent to the generating formulas of the
KP hierarchy?®?! Its soliton solutions, Lax operators, Darboux transformations, etc., have been

investigated in Ref. 22. We sa&t, =1+ 6, andb,,,;=1+v,. We also assume that=1, c,
:C3:“‘:CM+1:O, and

(t,n,j+M+1)=7(t,n,j). (29

The constraint29) is an analog oM-reduction of the KP hierarchy which restricts the space of
transformation group of functions to the subgroup generated/b&) 2 Let

. Ttn+1j)7(t,n,j+1)
T r(tn, ) r(t,n+1j+1)

(30)
. rtE1nj+1)(tn,j)

T (t+1n,))7(t,n,j+ 1)’

for 1<j=<M. We also introduce a small positive parameteiand puts,=exd —«;/e] and vy,
=exd —6,/e]. Then we have
Theorem 4.2: Let

t _ 5 t
Up;= lim elogUy;,
e—+0
t = lim &logV!
Uni= elogVy

e—+0
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be the ultradiscrete limits fol<j<M, and specify {j,,, andv}, ., by =} up ;= 6, and
S oL = k. Then{uy, ;} and{vy, ;} satisfy (22) and (23)
Proof: We use abbreviationst;:=7(t,n,j), r}::r(t+ 1n,j), m=7(t,n+1j), TEH-::T(t
+1n+1j). The n equatio with the constrain is rewritten as the followin
1n+1j). The ndKP equatiori28) with th int(29) i [ he followi
+1 simultaneous equations:
(14 y0) 717 5~ (14 8) 7 172+ (8= ¥0) Tn 175 =0,
(1+ ¥0) 27 3= (1+ 8) 77 573+ (8= ¥0) T 275 =0,
(31

(1+ 'Yn)TMTFLMJrl_(l_l' 5t)TE1,MTM+l+(5t_ Yn) Tam Tm+1=0,

t t t_
Yn™™M+1Tn1~ StTam+171 T (6= ¥n) Tam+171=0.

Defining
X1’=T:1,17'27'3“‘TM+1, y1’=Tn,1th7'37'4"‘TM+1,
X2:=Tl7'}1,273"'7'M+11 Y2i=TiTn2T5T4  Th 1,
XM+1::TlTZT3”'T:1,M+l' yM+1::T§.TZT3T4"'Tn,M+1v
Z e T F.— T
Xi=(X1,X25 - Xmr1) s Yi=(Y1,Y2, oo Ymr1) s
we obtain
I—)—():(ét_’)’n)yl
where
(1+8) —(1+y) 0 = 0
0 (1+6) —(1+vy, O 0
L= : : - - - :
0 0 0 e (I46) — L+
- Yn 0 0 0 5,

Its inverse matrix is easily calculated as
L=t =D/((1+ )M 8~ (14 vn) " ),

(1+7n)M+1_i(1+5t)i_1 j:M_|_1
(D) j=1 &L+ M 1+ y) 7 [Zi(jEM L)
Ya(LHy)" (A4 8) 7L j<i—1(j#M+1).

Thus, for 0<6;, y,<<1, we have
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6 O O - O

Yo O 6 G
(5t_‘}’n)|-71"‘ Yn Yn O 0 6 1

Yn Yn Yn 0 a1

Precisely speakingh~B means lim_, , g log A(e)=lim,_, , e log B(¢). Since

-1 M
Xj~ J’n;l yit 5ti221_ YitYm+1, (32

i M
Xj+1”7n§1 Yi+5ti§rl YitYm+1s (33

we have

Xj Ynzg;%(Yi/YM+1)+5t2iM:j(Yi/YM+1)+1
Xir1 Y2l (YilYme) T 03 o (YilYme) +17

(39

From the definition o}, ; andVj, ;, we find that the left-hand side ¢84) is equal toU,";"/Vy}, ;
and that

M i
(y; /YM+1):£[]_ Ua,i il;[l Va,i .

Since it holds that

X.
lim slog( ' ): lim ¢ log [the right-hand side df34)]

e—+0 Xi+1 e—+0

we have(22) by putting

t

t _ .
Up;= lim elogUy;,

e—+0

vp;= lim glogVy;.

e—+0
From the definitiong30), we have
Uit _ Va
Uni  Viigy'
which gives(23) in the ultradiscrete limit. O

Next, we consider soliton solutions to tié} automaton. It is obvious that if the limit

Yy= lim elogr(t,n,j) 35

e—+0

exists, then fron{30) we have for kj<M,
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t _wt t t t
un,j_Yn+1,j+Yn,j+1_Yn,j_Yn+1,j+l'
(36)
i+ t+1 t
=Y ]+1+YnJ_Yn,j _Yn,j+1'

From Theorem 4.2, they satis{22) and(23). Hence we have only to know!, . ; to get solutions
to (22) and (23). We will call Y;- an N soliton solution to theA(l) automaton when it is an
ultradiscrete limit of one paramet(aas) family of certainM X N sohton solutionsr(t,n,j) to the
ndKP equatior(28) as explained in Appendix B. It indeed corresponds tdNasoliton state in the
sense of Sec. Il A.

The following fact is well knowrf!?2

Proposition 4.3: The N soliton solution to (28) is given by the vacuum expectation value:

7(t,n,j)=(vadg(t)|vag), 37)

N
(=11 (1+aw(pctv* (a0). (38)

Heret=(t,n,j) and . (k=1,2, ... N) are arbitrary complex constants,

t n j
w(p,t>={ﬂ (ay—p)II (by—p) 11 <—cjr+p>-11w(p>,
t’ n’

j'=1

t n i
w*(q,t>={ﬂ (av—a) I (b —a) [T (—cj+a) |y (a),
l/ n/ ]/=l
with

N I, _, X 1=n

H Xn,:z 1 n=0

n’ -1

1_[n’—n+—1>(n’ , n=-1,

and ¢(p),y* (q) are fermionic field operators which satisfy
{e(p), (P} 4 == (P)¢h(p") + ¢h(p") Y/(p) =0,
{¢"(@),4*(a")}+=0, {¢(p),y*(q)},.=0 for (p#0q),
(vadg(py) ¢(p2) (P ¢* (4r) ™ (e —1) 4" (A1) [vag)

_ < 1 ) i (pi—pp(gj—ap)
=de = .
Pi=qi/ 1< j<r I ;(pi—q;)

The N soliton solution(38) is also a solution t@31) when it satisfies the constraif®9). We
can easily show
Proposition 4.4: The constraint (29) is achieved if it holds that

B
Px/ \1-pk

Note that, for a giverp,, there areM q,’s which satisfy(39) andq,# p,. We use this fact
to construct explicit solutions.

):1 (k=1,2;--,N). (39
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From Propositions 4.3 and 4.4, we can construct a clagds séliton solutions to theA{}’
automaton. The result is summarized as
Theorem 4.5:

N
i =

is an N soliton solution to the %) automaton. Herega=(mq,12, - --,un) (#i=0,1) and
maxﬁ[m] denotes the maximum among tA¥ values obtained by putting;;=0 or 1 for i
=12,...N,
i . t n
KO0 j)=K'= > /=2 min[ky LY+ min[6, L],
j’:]- t! n!
where the sums here are generally defined by
n
N n—=1Xn,  1s=n
> Xq={4 0, n=0
0

_Enr:n+lxnr, n$—1.

LO, /() (1<i<N,1<j<M) are non-negative integers which satisf{= =,/

L(D; L(Z)Z' ..;L(N)’

=Pz (=12, M),
and K{" is an arbitrary integer. In the case

,lLi:l fori=i1,i2,...,ip
;=0 otherwise

the phase factor fu;j) is given by

p p
A= 2 (k=1L0+ 3 (X (j+k=1)=XN(j)),

where X)(j)=3!,_ /% with /{2, = /.

The proof of this theorem is parallel to that in Ref. 7. We give the detail in Appendix B. For
N=1 it is the general solution, and we conjecture that it is also sdvferl. Except for these
cases the above-mentioned result does not cover the arbitrary initial condition. There is some
freedom to employ different “phase factor&(x;j) than the above-mentioned one depending on
the way in taking the ultradiscrete limit.

V. SUMMARY

In this paper we have introduced thé,}) automaton, which is a crystal theoretic formulation
of the generalized box—ball systems. In terms of the box—ball systems, it corresponds to the
dynamics ofM kinds of balls, where the carriers and boxes have arbitrary and inhomogeneous
capacities. We have introduced the solitons labeled with the cryBfat$ U(’](AF\A”_ 1) Scattering
matrices of two solitons are identified with the combinatoRamnatrices ofU(’](A&,ll),l) crystals.
Piecewise linear evolution equations are obtained and identified with an ultradiscrete limit of the
nonautonomous discrete KP equation. It allowed us to construct a cléssaditon solutions. We
have left the studies of phase shifts in the scattering and constructidh safliton solutions

corresponding to arbitrary initial conditions fof=2 as future problems. The interplay between
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the ultradiscrete limit of the classical integrable systems andgthé limit of the quantum
integrable systems elucidated in this paper deserves further investigation.
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APPENDIX A: PROOF OF PROPOSITION 3.8

First we show that it suffices to prove Proposition 3.8¥b+=1 andh=Kk. Without a loss of
generality we may seM =2 and consider the time evolutioh,-... We find it convenient to
adopt the equivalent box—ball system picture explained in Sec. I D. Thus the elema*fté in
(13) will be represented as ... 131..2 ... for example. It stands for the array of the balls with
the indices 1, 3, 1 and 2 and . denotes an empty fa.they donot correspond to the letters in
the semistandard tableaux in the crystal notativvie keep the same notatighto denote the map
corresponding td12) in the box—ball picture. It groups the array of balls and empty boxes locally
together into the boxes with capacities. ,6,,6,,.1, . . . . Then the assertion of Proposition 3.8
is that the scattering

0.5, T 152, )y B0 5 573, . T1%.2...)
(A1)

takes place for sufficiently large HereT;, T, are the ball-moving operators defined in Sec. 11D,

and we have used® =(T,T,)! in view of (10) and the fact that the balls with index3 are
absent. IN(A1) the sequences ... of the empty boxes are sufficiently long since both sides are to
represent the asymptotic two-soliton states in the sense of Sec. Ill A. Now we make use of the
relation (T,T,)!'=T,(T,T,)!"'T,. From the definition of the operatoii§’s and the assumption

that the two solitons are sufficiently separatésll) is equivalent to

l h k—h k +h—k k-h

(A2)
But this is justified once one establishes
4 k k {
(A3)
because(A2) and (A3) correspond to the same canonical systé'(n..lz--l N S R

+k...) in thesense of Sec. Il D with respect to the relevant time evolutions and therefore they
possess the parallel time evolution pattern owinglth). In this way the proof of Proposition 3.8
is reduced tqA3), which is equivalent to the cagd =1 andh=k.

Now settingL®=| andL(®=k, we are to show

Proposition A.1: Set M1, assume thaic,>L®(Vt) and 6,<L™ for all but finitely many
n's. Then two solitons with amplitudes®l and L@(L(M>L(?) scatter into two solitons with
amplitudes [?) and L), respectively

Namely, the amplitudes of two solitons do not change after the collision. To prove the
proposition, we need several lemmas. The following two lemmas are obvious.

Lemma A.2: For given integers;Kand K, if there exists an integergisuch that
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No No
K+ >, min 6, ,LY]=0=K,+ >, min[6, ,L?],
n’ n’
then, for r=ng,
n n

K+ >, min 6, ,LY]=K,+ > min[6, ,L?],
n' n'

and for n<ng,
n
0>K,+ > min[ 6, ,L?@].
n!
Lemma A.3: For given integers;Kand K, if there exists an integergsuch that
No No

Ky+ >, min[ 6, ,L@]=2L?>0=K!+ > min 6, ,LM],
n’ n’

then, for r=ng,
n n n
KJ+Ky+ >, min[ 6y ,LDT+ > min[ 6, ,L?]-2L@=K]+ > min6, L],
n’ n’ n’
and for n<ng,
n
0>K!+ >, min[ 6, LM
n!
Now we define an integdXy(t) for given integerK, andt as
No(t) No(t)—1

Ko—L@t+ > min6, L@]1=2L@>K,—L@t+ > min6,, ,L?].
n’ n’

With this Ny(t) we can show
Lemma A.4: For any integers Kand K,, we have

No(T) No(T)
lim | Ko—L@T+ > min[ 6, ,L?@]-K;+LOT— > min[6,, ,LD] | =+co.
T—w n’ n’

Proof: From the definition of j(t), we have
No(t)
—L@<—tL@+ > min[6, ,L@]<L®, (A4)

n’=Ng(0)+1

Hence we have



J. Math. Phys., Vol. 42, No. 1, January 2001 The A{Y automata 299

No(t) Np(t)
A :=—LPt+ D min6, L?]—| -LDt+ > min6, ,LY]
n’=Ng(0)+1 n’=Ng(0)+1
No(t)
=t(LD-LD)y— > (min6, ,LD]-min[ 6, L@ =t(LD—-L?)
n’=Ng(0)+1
No(t) Np(t)
— > (6, —min[6, LAOD>tLO-L@— > g, (A5)
n’=Ng(0)+1 n’=Ng(0)+1

From (A4), we obtain an inequality:
No(t)

t>—1+m / E min[Bn,,L(z)].
n'=Ng(0)+1

Thus, from(A5), we find

No(t) L2
A)>—(LDY+LD)+ > min Ten,,un—e,,, . (AB)
n’=Ng(0)+1

SinceLMW>L@ LM> g, for all but finitely manyn's and lim_ .. No(t) =+ which is seen
from (A4), we find

lim A(t)=+c. (A7)

t—+x

This suffices to prove the lemma. O
Now we prove Proposition A.1. Froif86) we have

Upi= U:m+11= 1= Yatrll,l_ Yﬁill,z— YLT"‘ Y:1,+21' (A8)
Specializing Theorem 4.5 to a two-soliton solution with=1 and ;= +«, we have
Yii = ma 0K (n,t),Ka(n,t),Ky(n,t)+Ky(n,t) —2L 2],
Yii o= ma{ 0K (n,t) —L® Ky(n,t) —L@ Ky(n,t) + Ky(n,t) —LE = 3L,
n
Ki(n,H)=K;+> min 6, LO]—tL® (i=1,2).
n/
Note thatYELz: Yﬁll due to the last equation i{31) and the conditior$,=exf — «;/e]=0. Given
LM>1 @) there exist integera;,n,,j,r1,r, that satisfy

ni<nit+j<ny, lsri=minL™,6,), 1=<r,=min(L®,6, ),

ny ny

K.+ > min[6, LY]>0=K,+ >, min[6, ,L?],
n’ n’

ny+j ny+j

Ki—LD+ > min[6, ,LY]>0=K,—L?+ > min6, ,L?],
n' n’
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whereK;(i=1,2) is defined by

ny

Ky=ry=2, min[ 6, L],
n!
n2
Ko=r,+2L@ =) min[ 6, ,L?1].

'

n

From Lemma A.2, we find at=0 that

Yi, 1= ma{0K;(n,0),Ky(n,0)+Ky(n,0)—2L2)],
(A9)
Yi, 1= ma{ 0Ky (n,0)— LY, Ky(n,0)+Ky(n,0)—LEP—-3L2)].
Substituting(A9) into Eq. (A8), we obtain

fO for n<n,
r, for n=n;
0, for ni<n<n;

’
np-1

LD~ > gy-r, for n=n]

n'=ng+1

0 for n;<n<n, (A10)
r, for n=n,
0, for n,<n<n,

ny,—1

L@~ > 6,1, for n=n}

n'=ny,+1

\ 0 for ny<n,

wheren/(i=1,2) are defined by/ =n;+1 if r;=L", and otherwise by

! ’

n; n -1
LO— > 6, —ri=0<LP— > 6, -r,.
n’'=n;+1 n’=n;+1

Thus we see that the two-soliton solution can correspond to any initial configuration in ifhich
soliton is situated to the left-hand side l0f) soliton with sufficient spacing. Hence, to prove the
proposition, we have only to show that the solutigndescribes the two-soliton state in which
L soliton is the left-hand side df(*) soliton fort>1.

From the definition olNy(t) and Lemma A.4, there exis®®andj such that

No(T) No(T)
Ko—L@T+ D min[6, ,L?@]>0=K,—LYT+ >, min[6, ,LY],
n’ n’

No(T)+]j No(T) +]j
Ko—L@T-L@+ > min[6, ,L?]>0=K;~LOT-LD+ >  minf6, LY)].
r]I

n’

Thus, from Lemma A.3, we have & T that
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Y = ma0Ky(n,T),Ky(n,T)+Ky(n,T)—2L2)],
Y =ma0Ky(n, T)—LP Ky(n,T)+Ky(n,T)— LB -3L2],

Substituting these into E4A8), we find thatuI describes a configuration in whidH?) soliton
locates arouna=Ny(T) andL® soliton does around>Ng(T). This completes the proof.

APPENDIX B: DERIVATION OF N SOLITON SOLUTIONS

Here we explain the derivation of tisoliton solution in Theorem 4.5 along the simple cases
N=1 andN=2. First we consider one-soliton solution. We will show that it has the form:

ji—1 t—1 n-1
YL’jzmax{O,Ko—izl /= > min[ky L]+ >, min[6,,L]], (B1)
= v o
wherelL is the amplitudeK, is an integer which is related to the phase of the soliton, and
(i=1,2,... M) are the non-negative integers which correspond to the numb¢h balls in the
soliton and=M ,/;=L. We give some details of its derivation, because similar technical difficul-
ties in obtaining multisoliton solutions are resolved in the same way.

To obtain(B1), we takeg(t) in (38) as

M-1

g(t)= /[[0 (I+c(p)(p,t)y*(a,,t)=1+(p,t)d*(p,1),

(B2)
M-1
$*(p.0= 2 c Pyt (a, D),
whereq, (#=0,1,... M—1) are the roots of the algebraic equation:
xM(1—x)—pM(1—
: ))(_E S =0, (x#p) (B3)

for a given real numbep[(1+M 1) "1<p<1], andc,(p) (0</<M—1) are complex coeffi-
cients which will be determined later. Sind®3) has one real positive root, we assume tpais
positive and we puty=qy/p. Thenp andq, satisfy

1—77M
p= g uT (B4)
1-9
1-p= WM(W , (BS)
1—77M
Go= 7| T, w1 (B6)

The 7 function 7(t,n,j) is given by vacuum expectation value as
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7(t.n,j)=(vadg(t)|vag

M-1
B 1 1-p/(1+85) \(1—q,/(1+ yo)
L 2 e ( ) (1_Q//(1+50))(1_P/(1+70)
1—p/(1+6,) (1 Q//(l-l—yn))
X . B7
H (1 q,/(1+ ) 1;[ 1-p/(1+y,) B7)
We introduce a small positive parameteand putn=exd —L/(Mg)]. We also put
& (p)m c/(p)( 1-p/(1+ 3) (1—q//(1+yo)
< a\p 1-0,/(1+80) )\ 1=p/(1+ yo)
No
X H (1-a/(1+o)) I (1-a,1(1+v)), (B8)
t'=-Tg n'=1
M-1 Q8
- /
Xp(S):= 2, T(p) —) (seZ), (B9)
/=0 p

whereT,=Ty(e) andNy=Ny(g) are positive integers which satistyy=Ny,=1/e. Hence,

e—+0 e—+0

Since

we have

Xp(s+M)= 20 ZO (1-p)" 1pM7o (i)

P xp(S+i), (B10)

wherepq(i)=1, o4(i)=i+1, and

(/=1M+i ky k1

o ()= X > x>

ki=(7— DM ky=(7-2)M  K,=0

(|+1) H (/M+i+j+1),
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for /=2. Note thaty,(s) is a real function wheny,y(j) (0O<j<M—1) are real. The ratio
0,1 (i) (/=1,0<i<M—1) is calculated as

0/11(i) (/+1)(M+1)+i lf[

o (i) /+1 k=2

/
<(M+1)e.

1
1+ =

<(M+1) 7

L M
+/M+i+k

Hence, if it holds that (+ p)pM<(M+1) e !, we obtain

M-1

1— M
xol(s+MI=(1-p) S, (1-pp

1-(1-p)pM(M+1)e

1+(i+1) |xp(s+i). (B11)

Thus we find

M-1
Xp(s+ M)~ M ;O Xp(S+i)

for sufficiently small.
We assume the following foyp(j):

Xp(l) = X0
xXp(2)=Nyy 1x,(1),

Xp(3)=Nay 2x,(2), (B12

Xp(M) =Ny 1y M- 1xp(M = 1).
Here x, is a positive number which is related to the initial phase of solyenexg —1/¢], /; and

N;=N;(e) (j=1,2,... M—1) are non-negative integers and positive numbers, respectively.
They are also supposed to satisfy

M—-1
/w=L— 2, /=0,
=1

lim & logN;(e)=0, (B13

e—0
) *
Njy/l$8N ,

for a sufficiently large positive integed*. From these condition&,(p) (0</<M—-1) are
uniquely determined by

Qo di1 - Om-1

S ) Co(p) szp(l)
q:o q:1 Qrv!fl Cl(:p) | P X:p(z) (B14)
. . . . - . M *
qg/l qg/l e qm_l CM*l(p) p Xp(M)

Note that the determinant of thd X M matrix on the left-hand side is equal to

o)

j];[i (%“%))7&0-
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It should be also noted frorfB11) to (B13) that

xp()=e N xp(i+1) for Vi,

(B15)
Xp()=CexdL/e]xp(i+M) for Vi and 3C>0.
From (B7), we have
S a\ o a |\t p
T(t,n,j)=1+ZO E/(p)(— t’ETO (1— Ty 1:[ (1— Ty
n—1 ~1 Ng -1
Al i
Hereafter we restrict ourselves to the regipm: <N, and|t|<T,. Noticing that
o a |ty q, |\*
AL (1_ o M (1_ 1+ynf)
t—1 1 No
:“(t-ZTO Tran) T 2 1+ynf))q/
3
=l+a, %/ +a, q?/ +ag 4 +-
we find
t-1 n—1 g
T(t,n,j)=l+1;[ 1- 1+p5t, ];[ (1— 1+pw ;O aixp(j+i), (B17)

whereay,=1 anda;;/a,~¢ 1. From(B15), we have

0<2, axp(j+1)<xp(i)
for sufficiently smalle. Putting yo=exgKy/e] and noticing the relations:

lim elog(1—p)=—L,

e—+0

j—1

lim s|ogXp(j)=Ko—i§1 /i

e—+0

-1
lim ¢lo (1— ) =min[L,6,],
e—+0 d 1+, L. 6]
lim ¢log 1—L =—min[L, «{]
e—+0 1+5t B

we obtain
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e—+0

-1 t—1 n-1
lim slogr(t,n,j)zma{O,Ko—E /= > min[ky L]+ >, min[6,,L]|. (B18)
i=1 t/ n/

Since

lim N0(8): lim T0(8):+Ooa
e—+0 e—+0

we have shown thdaB1) is a one-soliton solution to thA,(\,ll) automaton.

Next we consider two-soliton solutions. From the previous arguments about one-soliton so-
lution, we see that the field operatoggp) and ¢*(p) are essentially determined ly /; (j
=1,2,... M) andK,. Therefore we denote these operators by

y(p)=y(Lie), ¢*(p)=a*(L:i{/}:iKoie). (B19)
Then we take
9(t)=(1+ (1, 1) $* (p1, D) (1+ (P2, 1) * (1)), (B20)
where
Y =p(LD:e),  ¢*(p)=¢* (LU HKE 2) (=12, (B21)

We also assumeM=L® and/("=/{?) (j=1,2,... M). As we shall see in the following, the
latter condition turns out to be a natural constraint for soliton solutions. Using similar notations as
given previously, we have

7(t,n,j)=(vad(1+ ¢(p1,1) ¢* (p1,1)) (1+ ¢(p2,1) p* (p2,1))|vag
= 1+<Vad w(plvt) ¢*(p11t)|vac>+<vad l;b( p21t))¢*(p21t)|vac>
+(vad¥(p1, ) ¥* (p1,1) ¥(p2.t) ¢* (p2.1)|vag. (B22)

The second and third terms are calculated in the same way as above. The fourth term is evaluated
as

<Vad ‘/I(pl vt) ¢*(pl ,t)l/l( p2 1t) ¢* (p2 ,t)|VaC>

MLl (P1=P2)(q%)— ) A R
= 2 2 E/l(Pl)E/z(pz) ) 2_ (11) , e H
/1=0 /=0 (p1 Q/z)(pz Q/l) i=12\ Pi/ ¢Zq,
(i) \ —lt-1 n—-1 _1 N (i) \—-1
9 Pi Pi g 9/
“\ 1717, 1:[ (1_ 1+5t,)1;,[ (1_ 1+yn,) nl,;[n Sy
(B23)
We definexpi(s) by
. a|®
Xp(9)=2 @(p»(;) (i=1,2), (B24)
/= i

and suppose
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Xpi(z): N I)y/(l))(p (1),
N (B25)
Xp(3)=N3y 2 x, (2),

i (i)
Xp, (M) =Ny M1y, (M= 1),

where positive numbersl{? satisfy similar mequalmes tcﬁBl3) From the assumptiorv{"
>/(2) (j=1,2,... M), it |s always possible to choo$¢' such that

sz(j +1) . Xpl(j +1)
ol XodlD)

(B26)

Then(B23) is expanded as

2 t-1n-1

(P1—P2) ( Pk
B23)= —— 1-
( ) plp2 |L[l ];[ ]r;/[ 1+ 5t'

-1

P
1+ Yn'

E (@, Xp, (i + 1) Xp,( + 1H1") =y o xp, (§ +i)xp,(J +1+i")),

HM 8

where the coefficients; ;» are defined by
- (k)

P13 1 ‘Hl (1_ ayt)
(pl—q(/zz))(pz—q(/ll)) k=12 217, 1+ 8,

© o q(11) i q</22) i’
:2 Q| — )
=0y =g "\ P/ \Ps
P1

b . =|—=
o P2

-1

and

Qs

From (B15), we evaluate

aooxpl<1)xp2<1+1>>2 E &y, Xp,(J 1) xp,(j+ 1Hi")

=0 =0
i+i’#0

o ©

bo0xp,(1)xp, (11> 2 2 b1, (i Dxp, (i +14i7).
= |,:0

i+i'#0
Then, noticingag o= Pp,, by =P, and using(B26), we find

lim elogr(t+1n+1,j+1)

e—+0

=maq{ 0K (t,n,j),K@(t,n,j),KD(t,n,j)+K(t,n,j)—A()], (B27)
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t n
KO(t,n,j) =K 2 / — > min[&y, LD+ min[6,, LD (i=1,2, (B28)
1171 I n/
A(j)=L@+/42 (0<j=M-1). (B29)

This gives a two-soliton solution. For the scattering where the larger soliton overtakes the smaller
one like(l) in Theorem 3.10, the integef{") (1<j<M) corresponds to the number jth balls
in the larger soliton at— —«, and /(2) corresponds to that of the smaller solitontat + .
Since the balls in the smaller sollton &t>+o0 must be included in the larger soliton at
t——2, the condition/{"=/{? must hold for soliton solutions. Similarly, for the scattering
where the smaller soliton overtakes the larger one (ikein Theorem 3.10, the mtegef(z) (1
<j=<M) corresponds to the number ¢th balls in the smaller soliton at— — o, and /(1)
corresponds to that of the larger solitontat +o. We should also note that there are several
freedoms to choose the “phaseéX(j) in taking the ultradiscrete limit. However we conjecture
that the above-mentioned choice will cover all the canonical systems, hence essentially all the time
development patterns fod = 2.

The N soliton solution(40) is obtained in the same way. The key in the construction is to
evaluate the expansion:

(vad¢(p1) ¥* (A1) $(P2) ¥* (A2)- - (py) ¥* (r) |vag
=(vad(py) ¥(P2) (P ¥* (A) ™ (Ar 1) - ¥* (1) |vao

_ I<icj< (Pi—Pj)(Q;—ai)
Hlsi,jsr(pi_ql‘)

Mo (P — P
= A==k r(p,' Py (' 'ql=2---q,+other terms
Ii_41p;

and show that this term gives the phase faétoi;j) and the “other terms” do not contribute to
the final results. This can be done in the same manner as in the case of two soliton solutions. We
take

g(t)ziﬁll (1+4(pi H) ™ (pi 1)), (B30)
where
p(p) = (L), ¢ (p) = (LV{/hKY ) (i=1,2,...N).  (B3D)
We suppose
LU= @=...> L (N
and
W=Dz N (12 M),

Note that this impliesp,;>p,>--->py. The latter condition is also a natural constraint fbr
soliton solutions as in the case of two-soliton solutions. Finally we find that the result is given by
(40).
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It is shown that a Lagrangian system whose Legendre transformation degenerates
along a hypersurface behaves in a strange manner by jumping from time to time
without any “visible cause.” In such a jump the system changes instantaneously its
coordinates as well as its momenta. Necessary elements of the general theory of
such systems are reported and a detailed description of a postrelativistic oscillator
showing such a behavior is given. @001 American Institute of Physics.
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I. INTRODUCTION

In Lagrangian mechanics two, in a sense, extremal situations were widely studied. One of
them, classical, corresponds to systems with nowhere degenerated Legendre map. In this situation
the Legendre map identifies the Lagrangian dynamics with the corresponding Hamiltonian one.
On the contrary, in the second case the Legendre transformation is supposed to be everywhere
degeneratedand of constant rank Such a situation is common in gauge theories and for this
reason was studied in many works, starting with the pioneering paper by Thuatcin a generic,
in the sense of singularity theory, situation the Legendre mhapalmost everywhere nondegen-
erated except for a critical hypersurfa8eExamples of this kind of Lagrangians can be found, for
instance, in the literature dedicated to the motion of relativistic particles and the Einstein equations
in the post-Newtonian approximatién> However, the dynamics of these systems has not been
analyzed in a satisfactory way up to now, due to the difficulty of studying the behavior of
trajectories nealS. For reasons explained in Ref. 6 such difficulties cannot be overcome by
applying the standard variational principles. Instead, a new principle is needed, which does not
determinea priori the nature of the singularities of motion and takes into account the natural
geometrical structure of the singular hypersurface. Such a prescriptiobagfiangian transition
principle, has been proposed for the first time in Ref. 6. According to the transition principle, if a
trajectory of the system reach8sat a folding pointx of the Legendre map, then it makes a jump
to another precisely prescribed singular point belonging to the same characteristic curve. From
there the motion continues smoothly according to Euler—Lagrange equations up to a possible
subsequent jump.

The Lagrangian transition principle was suggested by an analogous prindiggeribing
impact and refraction phenomena for Hamiltonian discontinuous systems. We want to stress that
the analogy between these two cases is purely geometrical, whereas the physical situations are
completely differentin this sense, the Lagrangian transition principle cannot be reduced to the
Hamiltonian one, and the corresponding physical context is new.

3Electronic mail: pugliese@matna2.dma.unina.it
Electronic mail: vinograd@unisa.it

0022-2488/2001/42(1)/309/21/$18.00 309 © 2001 American Institute of Physics
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The aim of this paper is to illustrate the Lagrangian transition principle with an example of a
certain physical flavor, a relativistic oscillator in the post-Galilean approximation. This system is
a special case of a class of singular Lagrangians proposed in Ref. 4 and was partially studied in
Ref. 8. We have chosen it because it is “completely integrable” in the sense that it admits a
complete analytical description. We think that its self-consistency is an argument in favor of the
reasonableness of the proposed principle.

The paper is structured as follows. In Sec. Il the Hamiltonian transition principle is briefly
recalled, and then it is applied to deduce the classic laws of reflection and refraction in geometrical
optics. This application, together with those given in Refs. 6 and 7, represents strong evidence in
favor of the principle. In Sec. 1l we recall the Lagrangian transition principle and some of the
main results on Lagrangians with folds found in Ref. 6. The last section is dedicated to a very
detailed analysis of the above-mentioned relativistic oscillator.

II. TRANSITION PRINCIPLE

The transition principle is a universal, in a sense, prescription of how a physical system
admitting a natural Hamiltoniafisymplectig description should react when an instant drastic
change of some of its basic “parameters” happens. The last ones could be its Hamiltonian
function, phase or configuration space, various types of constraints imposed, charge, etc. In this
sense the transition principle is rather general and, for instance, describes various types of colli-
sions between rigid bodisis well as refraction and reflection phenomena in geometric optics
(see the example at the end of this sedtiokt present it seems hardly possible to derive the
transition principle in its full generality from more fundamental physical laws with such com-
monly used tricks as the passage to the limit, conservation law arguments, etc. For instance, for
Lagrangian systems with fold singularities considered in this paper the limit arguments cannot be
applied because that type of singularities is stable and as such cannot be approximated by regular
Lagrangians. Conservation law arguments are not, generally, sufficient for this kind of Lagrangian.
Darwin’s two-electron mod&igives an example of that. By these and other similar reasons we call
this prescription “principle” in order to stress its flavor, if not the status, of a physical law. In a
subsequent papewe will apply it to describe nonelastic collisions and a number of other of its
particular applications are on the agenda. In last years the interest to problems of the so-called
nonsmooth mechanics was growing and the recent Ydmk Brogliato gives an account of the
recent developments in this field and also contains a rich bibliography. It is recommended as an
alternative approach. But we would like to emphasize that the transition principle covers a larger
area of physical phenomena and, in particular, those that can be mathematically interpreted as
propagation of singularities of solutions @fonlineaj PDEs, say, geometrical opti¢see Refs. 11
and 12.

Below we illustrate the principle in its original and simplest versieae Refs. 6 and 7 for
further detail$ and give in addition a remarkable application to geometrical optics.

Let (®,0) be the phase space of a dynamical system Qith>; dp;/\dq; being a symplectic
two form on®. Suppose then thak is divided by a hypersurfadé into two closed domain® . ,

@ _, havingI' as their common boundary, i.eip . =1"=9d _ . Suppose also that the Hamil-
tonian of the system is smooth dn. . In other words, ifH.=H|y _, thenH. e C*(®.). This,
in particular, means thad .. | € C*(T"), but it is not supposed thét , |- coincides withH _|-. So
H, and consequently the Hamiltonian fietg, associated with it, are well defined dn\I" and is
bi-valued onl".

As is well known, the local coordinate expressionXqf is

M. 0 dH. d

Xy =3 (e 0 e O

T\ dpi 99y 9 Ip;)’

The corresponding canonical equations:
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FIG. 1. In- and out-pointgfor H . ).

COH. . oM.
-~ op ] Pi= aq;

Qi

describe the motion of the systenside ®.. . But when the phase trajectory arriveslait must
“decide” under control of which Hamiltonian to proceed on. Theansition Principleprescribes
how this decision should be taken.

First, recall that onI" is defined the one-dimensionetiaracteristic distribution x>1,, given

by
L={Ee T(®)[Qy(& =0 VyeT, ()}

Its integral curves are callecharacteristicsof I'.

Remark: A case of particular interest is whdh=7"1(S), with 7:T*(M)—M being the
cotangent bundle on a manifold and SCM being a hypersurface in the base. In this case
characteristics oF are straight lines contained in the fib@r’§(M), geS. Infact, if g,=0 is the
equation ofSin a certain local chart, then the characteristic directions are given by the vector field
alap, .

Coming back to the general situation, et I'. We say thak is a +-in-point (respectively, a
+-out-poin} if XH+|X is directed towardb , (respectively,® ). Similarly, we say thak is a
—-in-point (respectively, a—-out-poin} if Xy | is directed towardb _ (respectively®d ,) (see
Fig. 1). In and out points oH. are separated by a hypersurfdééCT" along which Xy is
tangent tol.

Suppose now that the phase trajectory, starting from a point inside, direspectively® ),
reaches a pointeI" at an instant, and letE be the constant value &, (respectivelyH _)
along the phase trajectory fo=t. Denote byy, the characteristic curve @f passing througl,
and by> ¢ (respectively ;) the hypersurfacéH . =E} (respectively{H =E}) of &, (respec-
tively, ®_). A point ye y,N 3¢ (respectively,y,N3c) is called decisivefor x if it is a
+-in-point (respectively, a--in-point). Now we can state the following.

Transition principle: When a moving point reaches the separation hypersulfatea point
x with energy E then it continues its motion from all-gtecisive points ¥ 3¢ simultaneously
under control of corresponding Hamiltonians.H The passage of the phase point from x to the
y’'s is assumed to be instantaneous
The transition principle is illustrated in Fig. 2.

In Ref. 7 some examples illustrating this principle in mechanics and in geometrical optics are
given. To these we will now add the following one.

Example (laws of reflection and refractionffollowing the previous remark for notations,
supposeM to be a region of the ordinary Euclidean space filled with two inhomogeneous isotropic
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FIG. 2. The Hamiltonian transition principlg andw are decisive fok).

optical mediaM , ,M _ separated by the surfa@ Denote the light velocity irM .. by V..(q),
with (g1,92,q3) being Cartesian orthogonal coordinatesMn Then in each medium the propa-
gation of light rays is described by the canonical systém:

. P s P
q|_ &pl ’ p|__ aql ’ 1= 14y
with
H.(q,p)=V=(a)pll, 1)

where]|p[|=Z;p?. S

Suppose that a ray starting from, reachesS at a pointq=(q;,9,,q3) with an impulse
P=(p1,p2.p3). The corresponding velocity is=V . (q)p/|[p]. In ®=T*(M) the phase trajec-
tory of the ray reacheE =7~ 1(S) at the poinix=(q,p). By the previous remark the character-
istic curveyyof I' passing through is a straight line contained in the fib'é{g(M). Let us choose
coordinates;,0,,qs) in such a way tha is tangent agj to the hyperplanéq;=qs} and theqg;
axis is directed towardl _ . Then the parametric equations gf are

gi(t)=q;
pi(t)=pi+ &ist, teR, i=1,2,3. (2

If E=H_(q,p), then, in view of(2) and (1), the intersectiony;N>¢ is composed of the two
pointsx and x* =(q,p*) with p*=(p1,p>,—pP3) It is easy to check that* is decisive forx.
Therefore, the transition principle tells that the reflected ray does always exist, and starts from the
same poinige S in the directionv* =V, (q)p*/|p*|| corresponding te*. Further,v, v* are
coplanar with the normal t& at'q and form with it equal angle#&, s, , respectively(reflection
law).

On the other hand, the intersection gf with the circleCEzEEﬂTﬁ(M): (2) is empty if
sin¢:\/1—u_32/V+(ﬁ)2>F, with n=V,(q)/V_(q); (2) consists of the two pointsX
E(Eﬁl 132 !ﬁB)v 5\(E(EEI. 1321_1‘)3)7 with T)SZHEH \/p3/||5”+n -1, if Sin¢$ﬁ But Onlys‘( is
decisive forx. Hence, by the transition principle, in cag® there is no refracted raytotal
reflection, while in case(2) there is one refracted ray whose initial directips (p1,p,,P3) is
coplanar with the incident ray and the norma&atq, and forms with this an angl¢_ such that
(Snellius’ law:
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lll. LAGRANGIANS WITH SINGULAR HYPERSURFACES

In this section we briefly recall the notion of relative Hamiltonian vector field and the La-
grangian principle of transition, proposed for the first time in Ref. 6. As was mentioned in Sec. I,
this principle was suggested by tbeometricalanalogy between discontinuous Hamiltonian sys-
tems considered in Sec. Il and singular Lagrangians with fold-type singularities. We stress that this
analogy is only geometrical, but that the two situations are totally different from the physical point
of view. However, as in the Hamiltonian case, the Lagrangian transition principle allows one to
completely describe discontinuities of motion that occur when the phase point of the system
reaches the singular hypersurface.

A. The relative Hamiltonian vector field

As was pointed out in Ref. 6 the basic tool necessary for extending the transition principle to
the Lagrangian case is thelative Hamiltonian vector fieldwhose definition we now briefly
recall. LetM, dimM=n, be the configuration space of a dynamical system described by a
LagrangianL e C*(T(M)), and let£:T(M)—T*(M) be the corresponding Legendre mapping.
Recall that, in a fixed local chargg, . .. ,g,) on M, L is represented by

gi=qi, i=1,....n,

: ©)
pi=L,(qv), i=1,....n,

where @,v), (q,p) are the natural coordinates a{M) and T* (M), respectively, associated

with (g4, .. .,0n)-
Now, one can associate withthe following vector field alongC:

def 9 J
xLin via—q_+2 L (@0) 5 (4)

The main properties of this operator were shown in Ref. 6. Here we limit ourselves to recalling
why X, was called Hamiltonian. In fact, it is easy to check that it satisfies the fundamental relation

X, 1Q=—dE, 5
with QO =3;dp;/\dq; being the canonical two-form of* (M) and
def

E(a,0)=2 vil, (a,0) ~L(d,0)

being the energy function associated withNow, if L is regular, i.e.£ is a diffeomorphism, then
the Hamiltonian functiord = (£ ~1)* (E) is uniquely determined and, denoting Ky, the corre-
sponding Hamiltonian vector field of* (M), one immediately gets frortb) that

XL: ,C*OXH .

To our knowledge, the relative vector fidld) was proposed for the first time in Ref. 14. Later
on some applications of it were found, especially in the study of constrained sy&teeRef. 6
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for further references However, the important role of, in the analysis of Lagrangian systems
with singular hypersurfaces was indicated only recently in Ref. 6. In the next section we will recall
briefly the main result of that work, the Lagrangian transition principle.

B. Legendre maps with folds. The Lagrangian transition principle

Referring to Sec. Il A for the notations, suppose thas non-regular and Ie5 be the singular
points locus of the Legendre map:

S={xe T(M)|rankd,L<2n}.

According to the standard-procedure, the motion of the system oussichn be described by
Euler—Lagrange equations:

qi:Ui:
d _ 6)
gi(Le)—Lg =0,

i=1,...n. Equation (6) can be rewritten in the normal form:

vi=fi(q,v) (7)

in a neighborhood of any pointg(v) e T(M)\S. So, outside ofS the motions of the system
coincide with the integral curves of the vector field

ZLZE

d o d
=\ Vigg, i(qu)a_vi-

On the other hand, this standard description is no longer possibdguj € S. Namely, accelera-
tions become undetermined &and velocities may have discontinuities.

As has been remarked in Sec. | for a generic Lagran§i@ a hypersurfacépossibly with
singularitieg. Its equation is

H(q,v)=0,
with H::detlLUinll. We assumeS to be a regular hypersurface (M), i.e.,
dH#0, VxeS. (8)
Further, we assume the following transversality condition
Kerd,£LNT,(S)={0}, VxeS. (9)

As was shown in Ref. 6, assumptiof8 and (9) guarantee’ to be asubmersion with fold$
Then, for any pointxe S there exist coordinatesx{, . .. X,,) on T(M) and {y,...,yon) ON
T*(M), centered ak and £(x), respectively, in terms of whicli takes the form

Y1=X1

(10
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e

X,

T* (M)

FIG. 3. The Lagrangian transition principlg is decisive forx).

From (10) it easily follows that the range of locally belongs to the half-spage,,=0. This
allows us to extend the definition of in- and out-points and the corresponding transition principle
to the Lagrangian case. Namely, a pairt S is called anin-pointif X, |, is directed toward the
range of £, X_|«(Y»n)>0, while it is called anout-pointif X, |, is directed outside of it
XL|x(Y2n) <0.

Let us note that the pullback* () of the canonical symplectic form of* (M) along the
Legendre map is degenerated Bnand is of rank 2—2 at any fold point. The restriction

def
Qgs=L*(Q)|s continues to be of rankr?—2 due to(9). This means that the kerngl of Qg at a

fold point xe S is one dimensional. This way one gets a one-dimensional distributio8. on
Characteristic curvesare integral curves of it. Denote by, the characteristic curve passing
throughx e S.

Now it is clear how to extend the transition principle to the Lagrangian case. Namely, calling
decisivefor x e S any in-pointy e y, belonging to the same lev&lg of energy ofx, the principle
can be stated as follows.

Transition Principle (Lagrangian case): When a phase point moving algngeZches at an
instant a point x S, it then continues its motion along all trajectories of &suing from points
decisive for x Moreover, the passage from x to a decisive point is instantaneous
The principle is illustrated in Fig. 3.

Remark 1:According to the principle there are in general as many possible phase trajectories
after the impact withS at a pointx as are the points decisive far This is analogous to the
splitting of light rays in reflection and refraction phenomena considered in Sec. Il.

Remark 2:Note that, in order to define in- and out-points in the Lagrangian case, it is essential
that the singularities ofZ be fold points. In Sec. IV we will see that the Lagrangian of the
post-Galilean oscillator also exhibits some irregular singularities, which can be studied as well.

IV. RELATIVISTIC OSCILLATOR

In this section the behavior of a relativistic oscillator whose Lagrangian possesses fold sin-
gularities is analyzed on the basis of transition principle. We have chosen this example to show the
above-mentioned theory in action mainly because of its relative simplicity: its phase trajectories
and characteristics can be described analytically without difficulties. However, we will see that
even in this simple case the behavior of phase trajectories with respect to the singular surface is
rather interesting, at least from a geometrical point of view.

By applying the transition principle to describe the discontinuities of motion of relativistic
oscillator we discover a rather remarkable phenomenon. Namely, if the energy exceeds a certain
level and at the same time the velocity is not too high, the oscillator starts jumping. In other words,
after a smooth motion it instantaneously changes its posiéisiwell as velocity. In the classical
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example of reflection and refraction of light, or elastic collision of bodies and patrticles, there is no
discontinuity of position. It is worth noting that the “jumping” motions of the oscillator are in a
good consistency with the smooth ones.

Finally, we note that the relativistic oscillator also possesses singularities of nonfold type.
These are very degenerated and the phase portrait in this region is rather curious.

A. Relativistic oscillator

Recall that there were proposed various relativistic generalizations of the standard harmonic
oscillator(see for instance Ref)8Some of them possess singularities, while others do not. In the
following we study the two-dimensional post-Galilean oscilltfrtensor rank 2, possessing both
fold and not fold type singularities:

L=L(r,x)=—mc[V1—x+(r/rg)2(1+x/2)]. (12)

Herem,r, are the mass and the characteristic length of the oscillator, respectively, linked by the
relationr,= Jm/k ¢ (with k being the elastic constant is the distance between the oscillating
mass and the elastic force centgr:v?/c? is the square of oscillator velocity, measured with
respect to the light velocitg. If we fix in the plane of motion a system of orthogonal coordinates
(g1,9,) with the origin at the center of the force, then obviously:

2, .2
vitus
r=vai+as x= =
Note that
0=x<1, (12

due to the fact that?><c?. In the following we refer tal =R?={(q,,q,)} as the configuration
space. So the Lagrangidhl) is defined in the domaitC T(M)={(q,v)}=R?XR?, defined as

U={(q.v) e T(M)|geM,|v]|<c}.

However we will often not distinguish betwedi and T(M). A similar convention will be
adopted also for the cotangent bundig(M)).

In the following we will systematically use it¥ the system of coordinates ,,x,6) [or
equivalently €,¢,x,u), with u=6— ¢] where ¢ and ¥ are the angle betweeq, axis andr
=(g4,92), and the angle betweenand the velocity vectov=(v,v,), respectively.

To simplify general considerations concerning Lagrandih) it is convenient to work with
a generic Lagrangian of the form

L=L(r,x). (13
The energy function
E=vil, +uvol,,—L (14
takes the following form for Lagrangiafi3):
E(r,x)=2xL,—L, (15

which in the case of oscillataill) becomes

E(r,x)=mc

=5 13|
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Lagrangian(13) also admits another integral of motion, namely #mgular momentum

I(r,x,u)=

XY

2 .
Lu(r %) (A2 = 0201) = 1 VXLy(r X)sinu. (16
For Lagrangian(11) it is specified as:

1

r 2
—| |sinu.
V1—X ro)

The integrall corresponds, via Noether’'s theorem, to the infinitesimal symmetry:

I(r,x,u)=mcr\/§

d 1%

X:_qza_ch+q1r7_c12:ﬁ’

of Lagrangian(13).

B. Singular hypersurface of relativistic oscillator

The Legendre mag associated with Lagrangiaid3) is given by

Qi=ai,
17)
2 .
pi:Lvi:EZLXvi’ |:l,2.

The corresponding Jacobian matrix in terms of standard coordingtes &nd @,p) in T(M) and
T*(M), respectively, has the entries:

4 .
Uqu', LvinZ?LX(Sij—F?LXXUin, |,j=1,2.

So, the corresponding Hessian is

4
H(,0) =Ly, Lo, = Lo, = calx(Lat 2XLy) =H(T,X)

vy
It is easy to see that
L+ 2XLy=E,, (18

and, therefore,

4
H(r,X)Z FLxEx-

Hence,
E,L,=0
is the equation of the singular hypersurfégeln other words
S=5,US,,

with S;={E,=0},S,={L,=0}. Each of these hypersurfaces is fibered in {@§jf), some of
which may reduce to circles or to a point, dependingLorThe bases of these “fibrations” are
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FIG. 4. Singular surface of the oscillatas€r/r ).

curvesC,,C, in the (x,r) plane, given by equations,(r,x)=0 andL,(r,x)=0, respectively.
These curves for the oscillat¢t1) are shown in Fig. 4. In this case the intersectiohS;N'S, is
the circle{r =ry,x=0} included in the null sectiomM CT(M). vy is the locus Sin& of singular
points of S. This follows easily from

q,, Qi
Ho = _'H,=T'(Lerx+ LxExr),

Vj Uj
HviZZEIZHXZZEIZ(LXXEX_I— LxExo),

and from the fact tha$;\y andS,\ y are regular.
Now we pass to describe how the kernel of the Legendre map behaves along the singular
hypersurfaces. A vector

2
J J
% [agg 0
belongs to the kernel al £ iff
a,—a,=0, L (bl)—(o) (19)
1—d2— Y, vv b2 - 0/

In full details, the second of condition ¢19) looks as

2
b1+ ?Lxxvlvzb2=0, (20)

2 2
Lyt ?Lxxvl

2
?Lxxvll)zbl'f' LX+ ?Lxxvg) b2=0
By construction these equations are linearly dependent at any posit of
For a point @,v) € S;\S; there are two possibilitied:,,(q,v) =0 or L,,(q,v)#0. In the first
case the system becomes trivial and Hgr,)L is two dimensional. This never happens for the
oscillator (11). In the second case systd@0) reduces to the linear equation:
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U1b1+l)2b2:0.
Except for the pointsy;=v,=0), Kerd )L is one dimensional. It is generated by the vector

Jd Jd

VoT— VU
20-'1)1 1071)2,

which coincides with— d/du in coordinatesi(, ¢,x,u). This shows that in both cases K&y, )L
is tangent t0S,. So fold type singularities do not belong & and dim£(S,)<3. For the
oscillator (11) £(S,) is two-dimensional and coincides with the null sectionT¢f{M).

Now we go to describe fold points belonging$¢.S,. These form an open domasf'c s,
everywhere dense i8; .

If (q,v) e $;\S,, it follows from (18) thatL,= —2xL,,, hence (20) becomes

vzbl—v1b2=0.

Therefore we have that

on S)\S,.

= oPan ok
Thus, singularities ofC alongS, are of a substantially different nature from those al&g
Namely, the kernel ofl £ is transversalto S;\S, (due to the fact thaE,,+# 0 on it) and istangent

to S,, sincedlL,/du =0 on it. Hence, dim_(S,) <3 and the transition principle cannot be applied
to S,. In the Sec. IV C we shall see that even characteristic directions are undetermisgd on

J J
Kerd,, L= SparE ”1E + 02@

C. Characteristic curves on S

To simplify computations we will make use of coordinatesx(¢,d) (or, equivalently,
(r,x,u,¢)). Let

P:Zi pidg;
be the universal one-forfron T*(M). Then

2
L*(p)=L, da+ vadq2=E\/§LX(r X)(cosu dr+r sinu de). (22)

It follows from (21) that £*(p)|s,=0. Hence
£*(0)]s,=0.

Therefore,£(S,) is a Lagrangian submanifold if* (M) (with possible singularitigsand char-
acteristic directions 0%, are undetermined.

Now we pass to describe characteristics ﬁﬂd. Since grad{#0 on it, the equation
E,(r,x)=0 of S; can be solved with respect to one of the variables,rsay

r=rqy(x) on S
In the case of the oscillatdd.1):

o
I'l(X)Z ( X)7'34-
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So (x,u,¢) can be taken as local coordinates $fi°. Then from(21) we get:
2 .
L‘*(p)|51= c XLy(r1(x),X)[r1(x)cosu dx+r(x)sinu de¢],

so that

E*(Q)|51=d/;*(p)|sl= %[a(x,u)dx/\dqu B(x,u)dx\do+ y(x,u)duNde¢], (22

with

a(X,u) = VXLy(r(X),X)ri(x)sinu,
d .
B = () \XL(ra(x), ) Isinu,

y(%,U) =T 1(X) YXL,(r1(X),X)cosu.

Characteristic directions 08, are described by a characteristic vector fi¥ld D(S;), i.e.,
such that

L£*(Q)]s,(X,0)=0. (23

J Jd
X:a5+b%+c—, a,b,ceC (Sl),

then(23) is equivalent, in view 0f22), to

0O —a -8B a 0
B v 0 c 0

This system is of rank 2 08°®, and its fundamental solution is

(a,b,c)=(y,— B,a).

Therefore,

e J N A L .
=Y BEJra%—q(x)cosu& q(x)smuﬁﬂl(x) X X(rl(x),x)smu%,

with g(x) =r(x) &Lx(rl(x),x) and characteristic curves are solutions of the system:
X=(q(x)cosu,
u=—q’(x)sinu, (24)

ri(x)

¢=q(x)rl(—x)smu.
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FIG. 5. Characteristic curves @ .

Integration of systen(24) is reduced, obviously, to its subsystem (24) whose solutions are to
be described in the rectandl®,1 X[ — m, 7] due to the cyclicity ofu.
It follows from (24), , that

%z — %tanu, (25)
and, consequently,
te(ljnu In|sinu| = f a (X) —f% —Inlq(x) |+c0nst:In| (x)| c>0.
Hence the general integral (25) is
a
sinu:m, aeR. (26)

For the oscillator(11) it is specified as

_ 2a (1—-x)%
Ssinu=— ——»— .
mcr, x372

Let us remark thatj(x) sinu= (c/2) | |51' So (26) shows thatl is constant along characteristic
curves ofS;. Therefore, by the transition principle, angular momentas well as energydoes
not change after the impact withy S

The curveq26), denote them by, , for the oscillator are shown in Fig. 5. Since the variable
u is cyclic mod 2r and y, and y_, are symmetric with respect to the axis we can limit
ourselves to deallng with the curves in the rectangl@ e [0, X[0,7].

Let P= (x,u, ¢)e81 and let vz be the characteristic passing throu@h E= E(P) The
intersection between the energy level surfageandS; is the torusTg={r=r(x),x=x}. The
projection of Tg onto the &,u) plane is the linex=x. For the oscillator(11) this is shown,
together with the projection of, in Fig. 6.

Therefore, assuminge[0,7], y5 intersectsTg at P and atP=(X,7—U, ). In order to
determineg notice that
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FIG. 6. Intersection between a characteristic curve and the energy level surface.

d_¢>_ ri(x) AU +ri(x) sinu @l ri(x) @7
dx ry(x) ) J1—sirfu o (0)Vgi(x) —a2|

as it results directly from (24), and (26). In (27) the choice of “+” (respectively, "
corresponds taie[0,7/2[ (respectively,ue]x/2,7]). Hence, the possible position jump is
described by

-~ — _ X ri(x)
—¢p=A =+2 D 2
wherex* (see Fig. is the root of
lat)[=1al, (29

and the sign+ (respectively,—) corresponds tae[ w/2,7] (respectivelyue[0,7/2]). In the
case of the oscillator equatid29) becomes

2[a]
et

which has only one rook* in the interval[0,]. Relation (27) remains valid also foue
[ —,0]. In this case the sigr (respectively,—) corresponds ta e[ — , — /2] (respectively,
uel[—m/2,0]).

Since on a given characteristic only two points Reand P, belonging to the same energy
level, a jump fromP to P or vice versa may happen only if one of these points is “in” while the
other is “out.” This occurs iff the functiorX, (g), g(qg,p) =0, being the equation of(S;), takes
opposite signs at poin®, P, and we go to analyze when such is the case.

It follows from (4) that for Lagrangiar(13)

4/3

?= (1-%)%,

X

1% 1% L, 1% 1%
XL:UIE_FUZ(?_QZ—{_T ql(?_p:|_+q2(7_p2 . (30

In the following we work with the local chart (¢,y,a), y=(p2+ p3)/m?c?, a=arctamp,/p;, on
T*(M). In terms of these coordinates the Legendre rtiap is given as follows:

y=¢(r,x), a=6, (31
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FIG. 7. Legendre map for the oscillatop€r/rg).

with ¢(r,x)= (4/m?c?) fo((r,x), and the expressiof80) takes the form

X, =cX cosu%+i£%)+i—ip(2005u%—%% . (32)
Due to (31) hypersurfaceC(S,) is given by
g(r.y)=0,
with
9(r.y)= H‘%xmti(r)—y. (33

where x=x,(r) is the function implicitly defined by equatiorE,(r,x)=0, and L(r)
=L,(r,x;(r)). For the oscillatof11) the Legendre mapping is illustrated in Fig. 7. In this case,
as is easy to see frof31) and(33), the image with respect t8 of a sufficiently small neighbor-
hood of a point ¢,v) € S; is contained in the regiofig>0}.

From (32) we get:

2\
X (g)=cosu| cyxg+——L.gy|.

But from (18), (33) and £(S;)’s equation follows:

4 ~ ~ ~ ~ 4 ~ ~ 8 -~
9=zl XL+ 20D Dt )i D0 1= g (Bt 2Ly = o axalily,
where, as beforef(r) meansf(r,x;(r)). Hence, we obtain
4 ~~
X (9)= 2c3VX cosu(2xqLyLy,—LyL,). (34

Since XL,,—L,=E, the restriction of(34) to S; is

— 4

X (9)= 73V, cosuL,E; (35)

In the case of the oscillator we halg<0, E,>0. Therefore(35) shows tham is:

(1) positive in the regiorS; corresponding ta e[ #/2,7|U[ — 7, — @/2];
(2) negative in the regio®, corresponding ta e[ — 7/2,7/2];
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(3) null on the bidimensional surfadd/=S,N{u= = 7/2}.

Hence, keeping in mind what was said previously about the rangeaoid applying the transition
principle, we see the following.

1) If Pe SH thenP is an in-point, whileP is an out-point. Therefore, if the phase point,
starting from outsideS; , reaches it aP, its trajectory can be prolongated starting frﬁr(jump
from P to P).

(2 If Pe S, thenP is an out-point, whileP is an in-point. Therefore, if the phase point,
starting from outsidéS;, reaches it aP, its trajectory can be prolongated starting frér(jump
from P to P).

(3 If PeW, i.e., ifu=+ /2, thenP=P. In this case the jump becomes infinitesimal and its
direction is indicated by the Hamiltonian vector field. In fat{w) is described in terms of
coordinates I(, ¢,y,«) by

g(r,y)=0,
cosu=0.
But it follows from (32) that onW
X (cosu)=— L sinu==* . )
mcyy meyy

which is different from zero org,. More precisely, it is positive fou= 7/2 and negative fou
=—m/2; in both case¥, is directed toward the regio8, in which singular trajectories end.
Finally note that, for the oscillatdrll),

di

XL(pI):TLI‘#O on Sz\sl

SinceL(S,) coincides with the null section af* (M), this shows thaky, is transversal t€(S,).

D. Phase trajectories of the oscillator

In this section we will study phase trajectories of the oscillator outSidéwill be shown that
their behavior depends strongly on their position with respect to the singular surface. Trajectories
arriving atS have discontinuities, described by the transition principle, and together with others
form a perfectly self-consistent dynamical model.

In this section coordinates (x,u, ¢) are used. Let, as before,

. _a+. a+_a+_a
L= ¢a¢ Xax TYau

be the vector field off (M) corresponding to the Lagrangian Sincel ,E are first integrals, then
Z (H=2.(E)=0,

or, equivalently

Therefore
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P=—KkI,Ey, X=KIE,, u=Kk(I,EI,E). (36)

On the other hand,

d +
P= a(\/qzﬁ—qz): W=c X cosU.

So that
_cyxcosu  cyxsinu c? 3
EJd, IE,  2rL,E,’ (37)
Notice also
Ex .
I, Ey—I,E,=—=sinu(2xLy+rL,), (38
cVx

which follows directly from(15), (18), (16), and

g E,
5(\&'—022—\&-

This way one gets the first three Euler—Lagrange equations:

f=cyXcosu

. E
X=—C—1/XCcosu (39
Ex

csinu
2r &LX

which form a closed subsystem of the whole system.

Denote byZ, the projection ofZ, onto the §,r,u) space. Then, solutions ¢89) are iden-
tified with trajectories on_. Due to obvious symmetry with respect to ther() plane it is
sufficient to consider those of them for whiok:[0,7] (i.e., counterclockwise motions around the
center of the elastic forge

The fourth Euler—Lagrange equation,

(2xLy+rL,),

. CyX
b= T\/—sinu, (40)
can be found directly from
4z
tangp=—,
¢ a1
so that
t X
¢(t)=cf %sinu(r)dﬂrconst, (41
0

with (x(t),r(t),u(t)) being a solution 0f39).



326 J. Math. Phys., Vol. 42, No. 1, January 2001 F. Pugliese and A. Vinogradov

R

3 A>2 ‘

0.2 0.4 0.6 0.8 1

FIG. 8. Energy level surfaces of the oscillator.

Let
By ={E=AxmcN{l=pumcry}. (42
Obviously,

= _ 1
zML—I'MLXS ,

whereI’) , is the projection of=, , into (r,x,u) space, while the circl&! corresponds to the
cyclic coordinate. In their turn surface&, , foliate the energy level three-fold,

2)\={E=)\m02}.

In the case of oscillatofl1) X, is not empty fora e[1,+c°].
Let 3, be the projection ok, onto the ¢,x,u) space. Obviously

’i)\:r)\xsl,

where T, is the curve in (,x) plane given by equatiofE(r,x)=Amc® and St is the circle
corresponding to the cyclic coordinate CurvesI’, are shown in Fig. 8. One can see thigt

intersects the projection§;,C,, of S;,S,, respectively, as follows(i) at two different points
Pi,P,, if A>2; (ii) at the single poinQ, if A=2; (iii) nowhere, if =<\ <2. ThereforeX,

intersectsS; andS,:

(1) along two toriT;=%,NS;,i=1,2, if \>2. These tori project ont®;’s and have §,u) as
cyclic coordinates.

(2) along the circley=S;N'S,, with the cyclic coordinatep, if A =2.

(3) nowhere ifA<2.

Therefore,2,\S has three connected componentsy ¥#2 and is connected, K<2.

In the case\>2 the behavior of phase trajectories depends strongly on the connected com-
ponent of3,\S they belong to. Due td41) it is sufficient to study trajectories df39), i.e.,
connected components of cur\/E§,M\~S, with 'S being the projection o8 onto the ¢,x,u) space.

In Fig. 9 the projections into thex(u) plane of three different kinds of such trajectories contained

in i)\ for a fixed\ are shown. As before we limit ourselves ts<0=< . The three vertical lines

correspond to the projectiorik of tori T;'s (in fact they are circles, due to the cyclicity of
coordinateu). Passing to further details, denote k= x;(\) the constant value of alongT;.
Connected components? |32 ,Ef of 2,\S correspond toX<x;,X;<X<X, andx,<X, respec-
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FIG. 9. Phase portrait of the oscillator for a fixed value of eneigy ).

tively. The trajectories belonging B} and=2 are discontinuous in the sense that they en&pn
and then jump, according to the transition principle, at another pois; oMore exactly, in the
situation shown in the figure, such a trajectory starts from a poifit;ef T,N{7/2<u<} and
reaches a point if; =T;N{0<u</2} in a finite time. Trajectoriey, andy,, whose projec-
tions7y, and%, are shown in Fig. 10, correspond to the same valug ahd of u. Denote by
Pear=(X,T,7—U) e T; andPg,=(X,F,u) e T; the common starting and ending pointsjgfand
¥,. When a phase point starts fronP ., ¢o)=(X,r,7—U,¢y) and then goes along; (or,
alternatively, y,) it arrives at the point Rgnq,#)=(X,r,u,¢) with ¢ given by (28) and then
proceeds along the trajectory whose projectiofy4ior, alternatively;y,, and so on.

In Fig. 11 the situation in the configuration spae={(q;,9,)}={(r,¢)} is shown. The
oscillating particle, starting from the point£r,$=0), moves along the projectiop, of y; onto

n/2

Pead
I
1

x1 X2

FIG. 10. Jumping phase trajectories.
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FIG. 11. Jumping oscillator.

M until it reaches the poinAendE(r:r_,q’):a). From there it jumps to the poiM\g,=(r
=T,¢=¢), where is given by(28). Then it splits into the two trajectoried;,5,, both with

initial velocity
(x=x,u=TU=m—u).

Consider now the trajectories @89) contained inEf. These are regular closed trajectories
winding around the cente€=C(\)=(X=Xc,u=m/2), wherexc=Xc(\) is the zero of the
equation XL, (ren(X,A),X)+rL,(ren(X,N),X)=0, andr=r.,(x,\) is implicitly defined by the
equationE(r,x)=Amc®. The corresponding trajectories in the configuration space are shown in

Fig. 12. They are precessions around the force center.

~. -1.5
S

FIG. 12. Regular precessions of the oscillator.



J. Math. Phys., Vol. 42, No. 1, January 2001 Discontinuous trajectories of singular Lagrangians 329

Note that both the discontinuous trajectorie§ii1 and the regular ones EJf nearS, tend to
be parallel to it, so that this component of the singular hypersurface is never reached by the phase
point, at least for trajectories with nonzero angular momentum.

V. CONCLUSIONS

The self-consistency of the example discussed in this paper shows that the transition principle
is natural not only from the geometrical but also from the dynamical point of view. The following
guestion should, however, be answered: whether the existence of the singular hypersurface is
merely due to approximation procedures or, on the contrary, it has a substantial physical meaning.

So, it would be very interesting to look for singular Lagrangians which could be directly experi-
mentally tested.
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An eigenvalue problem and the associated hierarchy of nonlinear soliton equations
are proposed in this paper. In particular, a representative system of generalized
AKNS soliton equations in the hierarchy is given, namely= — 3q,,+q’r
—2u0Pr = 2ur gyt 2%, 1= 3T Qri=2ur g, — 2uqrr+2uglre,
N-Hamiltonian structures are also established for all the hirarchy of generalized
AKNS soliton equations based dwi+ 1 pairs of Hamiltonian pairs. And then the
eigenvalue problem is nonlinear as a finite-dimensional completely integrable
Hamiltonian system under the Bargmann constraint between the potentials and the
eigenvalue functions, and its involutive system is also given. Finally, the involutive
solutions of the hierarchy of generalized AKNS soliton equations are found, in
particular, the involutive solutions of the system of generalized Sthger equa-

tions are given. ©2001 American Institute of Physics.
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I. INTRODUCTION

As is well known, it plays important roles in the soliton theory and dynamical integrable
system to find many new nonlinear evolution equations and to further consider their algebraic
properties and geometrical structures, such as the Hamiltonian structure, conserved density, sym-
metry, and Liouville integrable property3®In 1983, T developed a simple approach to Hamil-
tonian structures of integrable systems. The essence of the method was the use of the chain rule of
variational derivatives. It was improved further by Chowdhury and SwégRecently, Td pro-
posed a so-called loop algebra scheme to generate the hierarchy of Liouville sense integrable
evolution equations and their Hamiltonian structures from the eigenvalue problem. This approach
has been applied to find many new important nonlinear evolution equations hierarchies, such as
the AKNS hierarchy,* TA hierarchy® TB hierarchy’ TC hierarchy? BTP hierarchy'® Kaup—

Newell hierarchyt! WKI hierarchy!? Benjamin—Ono hierarch¥? Dirac hierarchy:* coupled

KdV hierarchy®® Harry-Dym hierarchy® coupled Burgers hierarchy;** Kupershmidt
hierarchy*® coupled MKdV hierarchy®> and AKNS—Kaup—Newell hierarcHy,and so on, and

the associated Hamiltonian structures can also be derived by virtue of the trace identity. In
addition, the bi-Hamiltonian structufe?>?2and tri-Hamiltonian structuf®2?3 had been also pre-
sented and applied to some soliton hierarchies by using the recursion operators.

In order to find many finite-dimensional integrable Hamiltonian systéRri3IHS), Cao
et al?5~%proposed an effective skill, nonlinearization technique, to find new FDIHS, in which the
well-known Bargmann constraint and Neumann constraint are contained. Many FDIHS have been
obtained through using the approa@ee Refs. 26—30But this method has its disadvantages.
Only lower order constraint flows could be found. In order to obtain higher order constraint flows,
more recently, Zent}*? presented a powerful approach, which contains Cao’s method, by intro-
ducing so-called Jacobi—Ostrogradsky coordinates. It can easily prove that these higher constraint
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flows are Liouville sense integrable by virtue of thenatrix and Poisson structufé:*
In this paper, we would like to introduce an eigenvalue problem

PN S
whereq andr are two scalar potentialg, being a constant spectral parameter, antdeing an
arbitrary constant, which is a simple extension of the AKNS eigenvalue probtem,

b1
b

As u=0, the eigenvalue probleifl) reduces to the AKNS eigenvalue problég).

This paper is organized as follows. In Sec. Il, we give a generalized AKNS soliton hierarchy
and its N-Hamiltonian structure by introducing the auxiliary problem (&, trace identity and
Hamiltonian pairs. As the special case(bf, the N-Hamiltonian structure of the AKNS hierarchy
is about(2). In Sec. lll, we first obtailN+ 1 pairs of Lennard’s operators pairs. Then a system of
constraint conditions are proposgd) is nonlinearized to a finite-dimensional completely inte-
grable system in the Liouville sense under the first constraint condition. In Sec. IV, the involutive
solutions of the hierarchy of generalized AKNS soliton equations are obtained. Finally, some
summaries and conclusions are given in Sec. V.

. 2

-\ q
6=U\Wé=U?, U<r A), ¢=

II. THE HIERARCHY OF GENERALIZED AKNS EQUATIONS ASSOCIATED WITH EQ. (1)
AND N-HAMILTONIAN STRUCTURES

It is clear that the adjoint equation of E(L) can be written as

AT )

a

V,=[U,V]=UV-VU, V=V()\,u)=(C

wherea; ,b;,c;(i=0,1,2,...) are all functions af andr to be determined later. Equatid8) leads
to

anx=0Cy—rbn, bnx=—2by11—298,—2uqrb,, Cnx=2C,11—2ra,+2uqrc,. 4)

The following recursion formulas are obtained from E4):

Cns1) . (Cn - 29—-ro tq—puqr ro~tr

K Tt T e

n+l n —Qd °q —3d+qd 'r—puqr
an+l:%(rbn,x'i_qcn,x)_/*qran,xrnzlvzv---v (5b)

where 9=dldx, 99~ 1=1. If we take the valuesi,=—1, by=c,=0, then, Eqs(5a and (5b)
imply the following results:

al:O! bl:q1 Clzriazz%qri b2:_%qx_lu“q2r!
Co=3r—uqré,  az=;(qry—ray) —ug’r?,
b= Gt 2 (0%r)x— 30%r + 5 urqayt u?q’r?,

C3= %qxx'l' %M(qrz)x_ %qu_ %Mqrrx+l/~2q2r31

a4:%(rqxx_qrxx_ qxrx)_ %q2r2+ %M(rzqqx_qzrrx)-



332 J. Math. Phys., Vol. 42, No. 1, January 2001 Z. Yan and H. Zhang

In order to deduce a hierarchy of nonlinear evolution equations from(Bgwe introduce the
auxiliary problem of Eq(1), namely,

¢, =V p=VI(\,u)¢, (6)

" [a b 8,, O
VIW=(\"V)* +A, = ( N e ) 7
( ) . IZO Ci _ai O 52[1 ( )

where 6;,,deltg,, are functions to be determined later. Therefore it is easy to prove that the
compatibility condition,;= ¢ of Egs. (1) and (6) generates the zero curvature equatidn
—VM+[U,V(W]=0, namely,

51n,x:_:U~(qrt+er)a 51n:_62nr (8)
0= —2bn;1+2064,, 9
r=2Cn41+2rd,,. (10

From Egs.(8)—(10), we have
S1n= _Ma_l(qrt'i'rqt):Ma_l(zrbn+1_2qcn+l)- (11

Substituting Eq.(11) into Egs.(9) and (10), we deduce the following hierarchy of nonlinear
evolution equations:

A,

—4uqd g —2+4/.Lqé?ll‘)(cn+1)

2+4urd1q —4urar Pn+1
Cn+1> I’)
=M =ML"N . 12
bn-%—l q ( )

In order to consider andl-Hamiltonian structures and the integrability of E§2) under the
Liouville’'s sense. We need to introduce new variables, namely,

G :(Gﬁl):(cnﬂ_zﬂranu (13)
el Gﬁl Pni1—2p0an41)"
According to Egs(4) and(13), we get
Ce1| _ 1+2urd~tq —2uro )(cnﬂ—z,uran+1 _ (cnﬂ—z,uranﬂ 14
Pri1 2199 1q 1—2uqd tr )\ bnr1—2p09a,, 1 Pni1—2n080+1)
Therefore we have the following recursion relation:
G, | ST 2 B gy [ 2RME ey (15)
"1 by 12080 b,—2u0qa, n’ o

where

) 1-2urd g 2uro~r
|\ —2upqo7tq  1+2uqd )’

and¥=N"1LN is a recursion operator.
According to Eqs(12) and (14), we easily derive
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G,
Utn:( r =Kn=30Gn+1=31Gn=3,Gp-1=""=31G1=J5+1Go, (16)

n
whereJ,=ML"N=J,(N"1LN)", n=0,1,2,... and

—8uqd g —2+8uqo tr
2+8urd tq  —8urd tr

Jo=MN=

Proposition 1:The 2X 2 matrix integrodifferential operatal, defined by the above equation
is a Hamiltonian operator for the arbitrary constant

Proof: Because it is a skew symmetry operator, iX.= —J, and it is easy to prove thad
satisfies the Jacobi identity, that is,

(Z,35(u([JpXTY) +cycle(X,Y,Z)=0(modd),

with X=(X1,X5)", Y=(Y1,Y2)", Z=(Z,,Z,)", andJj(u)[f] denotes the Frechet derivative of
Jos

d
JBWIF1= g2 Io(ut e )| c=o-

Hence,J, is Hamiltonian(or symplectig operator.

According to the same theory, we can also prove that other opetg{orsl,2,...) are also all
Hamiltonian operators.

Through using the same as the notion applied in Refs. 8 and 9, the Killing—Cartan standard
form is defined by(X,Y)=const:tr(XY). In order to calculation conveniently, we take const.
=1. Hence we have from Eqgél) and (3),

VaU—Z VaU—Zb V&U—Z 1
2 =c—2ura, » o | =€~ 2mab, N 17

According to definition of the trace identif{? yields

i( Vﬂ )_)\—Bi)\ﬁ< Vﬂ Vﬂ )T 18
su ) V)Y toqft\ U ar ) (18)

where B is constant to be determined later. Substituting @&4) into (18) and combining these
conditions

a=>, a\"’, b=_§‘6 b, c=20 co\ ',
1= (=

1=0

we get through comparing the coefficientsof" =2 of two sides of Eq(18), yields

1)
E(_Zan+2):(,3_n_l)(cn+l_Zﬂran+lybn+l_2#qan+l)-r- (19

In order to get the value g8, we taken=—1 in Eq.(19) and obtain3=0. Therefore we have

G = Cne1—2mraniy) _ OHnea o Hy
"L bn 2098, éu ou

-VG,, (20)

with the Hamiltonian functions satisfying
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2a
Ho=2urq, H,= ;”, n=12,... (21)

Therefore the hierarchy of the nonlinear evolution Efjf) possesses the following formal
N-Hamiltonian structures from Eq§l6) and (20):

qtn 5Hn+1 5Hn 5Hn,1 5HO
utn_<rt>_Kn_J° TR T T N TRt @2

n

In fact, we can easily show that the Hamiltonian functidi,}, =0 satisfying 5H,,,/du

=W (6H,/6u), n=0 are all common conserved densities for the whole generalized AKNS hier-
archy. And they are commute with each other undemnti@ Poisson brackets associated with the
Hamiltonian operators;=Jy¥', i=0,1,2,..., because a direct calculation can show that

L [SHy SHL\ [ 8Ha . SHp
{Hn-Hm}Ji_J<Wa‘]iw>dX—J'<W,Ji\I’ 5u dx

oH, . oH, f oH, oH,
_f<5_u’w Ji5_u>dx_ V50 s | 9

:{Hn+1aHm71}Ji:'":{Hman}JivnvaO- (23

Therefore we ge{Hn,Hm}Jizo. During the course of the proof of E@3), we use the following
formula obtained fromJ; = —J;:

JW=JoW' =0, 1= —JF == (JW)* = —W*JF =w*];.
And we can also derive

o

oHy | OHn|
“Yisu

[Kn:Km]z[JiWaJiW {Hn,Hm}=0,n,m>O, (24)

which shows that every system generalize AKNS equations posses infinitely many commuting
symmetries K, }r_g.

Remark 1:Taking n=2, Eq. (16) becomes a new system of the generalized ANKS soliton
equations,

0p=— 3 Oxxt 071 — 20071 = 2urqdy + 20 ?, (259
M= 30— Qré=2ur 2o, —2uqrr,+2ugrs. (25b)

If setting u=0, then Eqgs.(25) reduce to the AKNS equatidn? Equations(25) possess the
flowing quadr-Hamiltonian structures,

- ( qt SH SH,
U=

_ oHy
su  “? su

ou '’

re =Josy
where the Hamiltonian functiond;, (i=0,1,2,3) are
Ho=2uar, Hi=ar, Hp=2(qr—ra)—ua’?,
Ha= 12 (1Quc Al O ) = 1 Q71 2+ 2 (1 %A o= G°rr ).

Remark 2:Equation(2) is a special case of Eql) with =0, so according to the above
results, we can come to some conclusions about the hierarchy of the AKNS equations,
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A, 0 -2 Cn+1> (Cn+1) n (r)
ut_(rt )_Kn_(Z 0 )(bn+1 —M bn+1 —MLN q/’ (26

n

1o-ro1q ro='r (o -—2) (1 o)
L: y M: y N: .
—qd g —%a+qotr 2 0 0 1

Therefore, we have

where

0 —2)
Jo 2 0)
2007 'q 9—2r9 1q

J;=MLN=ML=
! a—2ra q  2ror

),L=MUN=MLH=Z&M.

It is clear thatJy, and J; are both Hamiltonian operators and we can also derive Jhat
=2,3,... are also Hamiltonian operators. The hierarchy of the AKNS equ@&Bralso possesses
the following N-Hamiltonian structures:

°f;
Iy

Mooy OHy_ Moy . oHg
su  tsu 7 osu o Ml

U= =Kn=Jg

with the Hamiltonian functions satisfy E(R1). They are all common conserved densities for the
hierarchy of AKNS equations and commute with each other under these Poisson brackets associ-
ated with the Hamiltonian operatod, i=0,1,2,.... In addition, there exists many commuting
symmetriesK,,=J; 8H,,_; . 1/du};_, for every system of AKNS equations.

[ll. FINITE-DIMENSIONAL INVOLUTIVE SYSTEMS

Let \{(i=1,2,...N) be N different eigenvalues of problertl), and ¢;= (¢, d)' be the
corresponding solutions of problett), then(1) can become

[oa) o=(3) @

Through the direct calculation, we get the spectral gradiéxi of the spectral value\; with
respect to the potentiatpandr,

b1
o

_(—M—um q
X r Nit+uqr

S\
VN=SG

T 5 A 2ur by
:(‘Zf "’1i¢2‘dx) (—¢ii+2m¢1i¢2i '

Proposition 2:The Hamiltonian operatord, andJ, , ; are all the pairs of Lennard’s operators
for k=0,1,2,....
Proof: Through the direct calculation, we easily find

SN SN\ T
8q ' or

Jk+1V)\i:)\i‘]kV)\i . k=O,1,2,..., (28)
which shows that the proposition is true. In fact, we can prove that they are also Hamiltonian
23
pairs:
Next, we consider the following formal constraint conditions:
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OHisa 3 Ohk+1  OHis (P, ®o)+2ur(Py,Py) ~0
su Y& su su N\ (D, @) +2uq(Py, D)) ’

(29

where®;=(¢;1,¢j2,....¢jn), j=1,2 and(-,-) denotes the standard inner produciRM.

Takingk=0, y=3 in Eq. (29), yields the first explicit constraint condition,

(@) (@09
21 2= (@, ®,)) | 2(1-2— (@1, D))

(30
In fact, this being the Bargmann constraint, that is

(Py, Do) +2— pur(P,,Py)

G.= .
! (D1, D) +2—uq(P,,Py)

N
;):21 VA, = (30D

Hence,(27) reduces to the following finite-dimensional Hamiltonian system under the Bargmann
constraint(30a),

D(D,D —pu® (D, D Dy, P H

® = AD,— APy, D) n uP (P, D) (D, 22) _ 1' (313
2(1-2— (P, D5)) 4(1-2— (P, Dy)) a0,
D (D,, D DDy, P )( Dy, P H

D= ADy+ (P2, Py) pPo(Py, P1){(Ps,P2) _ M (31b)

2(1-2— (D1, Dy)) 4(1—2_,“(‘1)1,@2»2 - P,
with the Hamiltonian functiorH; being

<CI)1,CI)1><CI)2’¢)2>
4(1+2u{ D, D))’

H,= _<Aq’1:‘b2>_

where A =diag(\1,\5,...,Ay). For other constraint conditionk#0), we can reduce problem
(27) to other finite-dimensional Hamiltonian systems.
Theorem 1: Let (®4,P,) satisfy Eq.(31), then

(®1,D) . (P, D))
2(1-2u(®,D,))" 2(1-2p( Py, Py))

is a solution of the stationary generalized AKNS equations,
KN+d1KN—l+.“+dNK0:0' (32)

Proof: Letting the operator]glJl act upon Eq.(30b for m times and notingG, ,1=J,
—1J,G,, and Eq.(28), we have

<Amq)21q)2>+2_/*l’r<‘/\mq)l 1(D2>

Gt azGm-a ¥ anGoT aneaBoa= | —(Am; @1)+2- pg(A™, @) )

(33
where j(j=2,3,...m+1) are arbitrary constants ar@_, € Ker Jy. Introducing the following
polynomial:

N
P(y)=II{L ;(y—N) =yN+ plyN_1+"'+pN:kZO Prn—kY.

And then let the operatoTOEE‘ZOpN_kyk act upon Eq(33) and notingK,,=J,G,,, we can derive
Eqg. (32). Whered;(i=1,2,...N) are determined bw;(i=2,3,...m+1) andp;(i=1,2,...N).
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The standard Poisson bracket containing two functions in the symplectic space
(RN, dd,Add,) is defined by

FG_% oF 96 9F 96\
(F, )_izl Dy I,y Dy IDy, = Py fI>2> ( Dy tI>1>-

F, G are involutive, if (F,G)=0. Next, we would like to construct a set of functiofs,,} as
follows:

Fn=— (A0, 0, (1-2—u(Py,D,))

(A1, ;) (AT1Dy, D)
iEO (A", D) (AT, D)

2,.... (34

n
n

L
2
:Ol L

Proposition 3:For the functiond=,, defined by Eq(34), there exist the relation for arbitrary
n,meZ",

<Fn,<blyFm,<b2> = <Fm,(l>lan,<1>2>-

Proposition 4:The functions{F,} determined by Eq(34) are involutive, i.e., F,,F,)=0
under the Poisson bracket in symplectic spaR&\(dd;Add,).
Proof: According to Proposition 4, it yields

(Fn va):<Fn,<blva,<I>2>_<Fn,<I>21Fm,<I>1>
:<Fm,<blaFn,<I>2>_<Fm,fl)lan,<I>2>:(Fm-Fn): —(Fn.Fm).

Hence €,,F,)=0 and we complete the proof of the proposition.
Theorem 2: The Hamiltonian systemd~(,),

aF, aF,

(Fn):q)ltn:_v ®2tn:_Ev

7D, n=0,1,2,... (35

with Hamiltonian functiond=,, determined by Eq(34) are completely integrable in the Liouville
sense.

Proof: According to Proposition 4, we know 